找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Properties for Parabolic and Elliptic PDE‘s; GPPEPDEs, Palinuro, Filippo Gazzola,Kazuhiro Ishige,Paolo Salani Conference proceed

[復(fù)制鏈接]
樓主: 戲弄
11#
發(fā)表于 2025-3-23 13:00:03 | 只看該作者
Schirmd?mpfung eines DrahtgeflechtesThe Phragmén-Lindel?f theorem is established for viscosity solutions of fully nonlinear second order elliptic equations in a half space of . with a dynamical boundary condition.
12#
發(fā)表于 2025-3-23 15:43:57 | 只看該作者
,Metallgeh?use mit Magnetmaterialien,In this paper, we deal with entire solutions to the generalized parabolic .-Hessian equation of the form . in .. We prove that for ., any strictly convex-monotone solution . to . in . must be a linear function of . plus a quadratic polynomial of ., under some assumptions on . and some growth conditions on ..
13#
發(fā)表于 2025-3-23 19:18:03 | 只看該作者
14#
發(fā)表于 2025-3-24 01:36:27 | 只看該作者
https://doi.org/10.1007/978-3-319-56330-5We consider the second or higher-order Rellich inequalities on the whole space .. In spite of the lack of the Poincaré inequality on the whole space, we show that the higher-order Rellich inequalities with optimal constants can be improved, by adding explicit remainder terms to the inequalities.
15#
發(fā)表于 2025-3-24 05:29:41 | 只看該作者
16#
發(fā)表于 2025-3-24 08:22:28 | 只看該作者
17#
發(fā)表于 2025-3-24 13:45:48 | 只看該作者
18#
發(fā)表于 2025-3-24 15:21:22 | 只看該作者
19#
發(fā)表于 2025-3-24 20:52:04 | 只看該作者
20#
發(fā)表于 2025-3-25 00:15:27 | 只看該作者
Entire Solutions to Generalized Parabolic ,-Hessian Equations,In this paper, we deal with entire solutions to the generalized parabolic .-Hessian equation of the form . in .. We prove that for ., any strictly convex-monotone solution . to . in . must be a linear function of . plus a quadratic polynomial of ., under some assumptions on . and some growth conditions on ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
边坝县| 喀什市| 德安县| 陕西省| 峡江县| 怀远县| 洪洞县| 蒙阴县| 丽江市| 上蔡县| 普陀区| 白银市| 福泉市| 苏州市| 大庆市| 山阳县| 阳谷县| 股票| 黑水县| 漳州市| 马公市| 黔西县| 厦门市| 门头沟区| 化隆| 太康县| 集贤县| 安龙县| 基隆市| 广丰县| 湄潭县| 和政县| 泰兴市| 天柱县| 天水市| 勃利县| 黑山县| 休宁县| 舞钢市| 汉沽区| 湘潭县|