找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Properties for Parabolic and Elliptic PDE‘s; GPPEPDEs, Palinuro, Filippo Gazzola,Kazuhiro Ishige,Paolo Salani Conference proceed

[復制鏈接]
樓主: 戲弄
11#
發(fā)表于 2025-3-23 13:00:03 | 只看該作者
Schirmd?mpfung eines DrahtgeflechtesThe Phragmén-Lindel?f theorem is established for viscosity solutions of fully nonlinear second order elliptic equations in a half space of . with a dynamical boundary condition.
12#
發(fā)表于 2025-3-23 15:43:57 | 只看該作者
,Metallgeh?use mit Magnetmaterialien,In this paper, we deal with entire solutions to the generalized parabolic .-Hessian equation of the form . in .. We prove that for ., any strictly convex-monotone solution . to . in . must be a linear function of . plus a quadratic polynomial of ., under some assumptions on . and some growth conditions on ..
13#
發(fā)表于 2025-3-23 19:18:03 | 只看該作者
14#
發(fā)表于 2025-3-24 01:36:27 | 只看該作者
https://doi.org/10.1007/978-3-319-56330-5We consider the second or higher-order Rellich inequalities on the whole space .. In spite of the lack of the Poincaré inequality on the whole space, we show that the higher-order Rellich inequalities with optimal constants can be improved, by adding explicit remainder terms to the inequalities.
15#
發(fā)表于 2025-3-24 05:29:41 | 只看該作者
16#
發(fā)表于 2025-3-24 08:22:28 | 只看該作者
17#
發(fā)表于 2025-3-24 13:45:48 | 只看該作者
18#
發(fā)表于 2025-3-24 15:21:22 | 只看該作者
19#
發(fā)表于 2025-3-24 20:52:04 | 只看該作者
20#
發(fā)表于 2025-3-25 00:15:27 | 只看該作者
Entire Solutions to Generalized Parabolic ,-Hessian Equations,In this paper, we deal with entire solutions to the generalized parabolic .-Hessian equation of the form . in .. We prove that for ., any strictly convex-monotone solution . to . in . must be a linear function of . plus a quadratic polynomial of ., under some assumptions on . and some growth conditions on ..
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
绥棱县| 宜丰县| 阳东县| 洛川县| 涪陵区| 牟定县| 叙永县| 原平市| 廊坊市| 泸水县| 新密市| 乌苏市| 南澳县| 泾川县| 武义县| 于都县| 南川市| 沙坪坝区| 宝清县| 蒙山县| 金堂县| 房产| 珲春市| 台前县| 曲阜市| 怀化市| 来凤县| 正阳县| 通榆县| 马边| 巩留县| 枝江市| 铜鼓县| 平遥县| 温宿县| 永春县| 浪卡子县| 洪泽县| 甘孜县| 伊金霍洛旗| 乌鲁木齐市|