找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Problems on Maxima and Minima; Titu Andreescu,Oleg Mushkarov,Luchezar Stoyanov Textbook 2006 Birkh?user Boston 2006 Convexity.Eu

[復(fù)制鏈接]
查看: 21627|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:05:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Problems on Maxima and Minima
編輯Titu Andreescu,Oleg Mushkarov,Luchezar Stoyanov
視頻videohttp://file.papertrans.cn/384/383587/383587.mp4
概述Presents hundreds of extreme value problems, examples, and solutions primarily through Euclidean geometry.Unified approach to the subject, with emphasis on geometric, algebraic, analytic, and combinat
圖書封面Titlebook: Geometric Problems on Maxima and Minima;  Titu Andreescu,Oleg Mushkarov,Luchezar Stoyanov Textbook 2006 Birkh?user Boston 2006 Convexity.Eu
描述.Questions of maxima and minima have great practical significance, with applications to physics, engineering, and economics; they have also given rise to theoretical advances, notably in calculus and optimization. Indeed, while most texts view the study of extrema within the context of calculus, this carefully constructed problem book takes a uniquely intuitive approach to the subject: it presents hundreds of extreme value problems, examples, and solutions primarily through Euclidean geometry...Written by a team of established mathematicians and professors, this work draws on the authors’ experience in the classroom and as Olympiad coaches. By exposing readers to a wealth of creative problem-solving approaches, the text communicates not only geometry but also algebra, calculus, and topology. Ideal for use at the junior and senior undergraduate level, as well as in enrichment programs and Olympiad training for advanced high school students, this book’s breadth and depth will appeal to a wide audience, from secondary school teachers and pupils to graduate students, professional mathematicians, and puzzle enthusiasts..
出版日期Textbook 2006
關(guān)鍵詞Convexity; Euclidean geometry; Maxima; algebra; calculus; extrema; ksa; maximum; minimum; optimization; combin
版次1
doihttps://doi.org/10.1007/0-8176-4473-3
isbn_softcover978-0-8176-3517-6
isbn_ebook978-0-8176-4473-4
copyrightBirkh?user Boston 2006
The information of publication is updating

書目名稱Geometric Problems on Maxima and Minima影響因子(影響力)




書目名稱Geometric Problems on Maxima and Minima影響因子(影響力)學(xué)科排名




書目名稱Geometric Problems on Maxima and Minima網(wǎng)絡(luò)公開度




書目名稱Geometric Problems on Maxima and Minima網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Problems on Maxima and Minima被引頻次




書目名稱Geometric Problems on Maxima and Minima被引頻次學(xué)科排名




書目名稱Geometric Problems on Maxima and Minima年度引用




書目名稱Geometric Problems on Maxima and Minima年度引用學(xué)科排名




書目名稱Geometric Problems on Maxima and Minima讀者反饋




書目名稱Geometric Problems on Maxima and Minima讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:33:34 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:53:47 | 只看該作者
Thilo Büsching,Gabriele Goderbauer-Marchnerimeter. The best-known example of such a problem is the classical isoperimetric problem, where of all plane regions (bounded by a simple closed curve) with a given perimeter one wants to find the one of maximal area. Its solution is given by the so-called isoperimetric theorem, which we state in three equivalent ways.
地板
發(fā)表于 2025-3-22 07:29:09 | 只看該作者
Methods for Finding Geometric Extrema,The transformations involved are the well-known symmetry with respect to a line or a point, rotation, and dilation. Apart from this, in some space geometry problems we are going to use symmetry through a plane, rotation about a line, and space dilation. We refer the reader to [17 ]or [22 ] for general information about geometric transformations.
5#
發(fā)表于 2025-3-22 08:58:00 | 只看該作者
6#
發(fā)表于 2025-3-22 16:35:53 | 只看該作者
Textbook 2006 to theoretical advances, notably in calculus and optimization. Indeed, while most texts view the study of extrema within the context of calculus, this carefully constructed problem book takes a uniquely intuitive approach to the subject: it presents hundreds of extreme value problems, examples, and
7#
發(fā)表于 2025-3-22 19:52:07 | 只看該作者
8#
發(fā)表于 2025-3-23 01:16:02 | 只看該作者
Hints and Solutions to the Exercises,myqaeeacaGLOaGaayzkaaGaeyypa0ZaaSaaae% aacqaIXaqmaeaacqaIYaGmaaWaaeWaaeaacqWGdbWqcqWGbbqqcqGH% RaWkcqWGdbWqcqWGcbGqaiaawIcacaGLPaaacqGGUaGlaaa!56EE![CM = frac{1}{2}CC‘ leqslant frac{1}{2}left( {CA + C‘A} ight) = frac{1}{2}left( {CA + CB} ight).]
9#
發(fā)表于 2025-3-23 05:20:39 | 只看該作者
978-0-8176-3517-6Birkh?user Boston 2006
10#
發(fā)表于 2025-3-23 08:18:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 10:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大理市| 平和县| 米泉市| 苏州市| 柯坪县| 济阳县| 天镇县| 太谷县| 宜兴市| 鸡泽县| 灌南县| 桑植县| 九龙城区| 铜陵市| 金门县| 句容市| 耿马| 文安县| 中阳县| 大新县| 金沙县| 柳州市| 孟州市| 廉江市| 武鸣县| 泸溪县| 丘北县| 吉安市| 大安市| 巴中市| 霍山县| 资中县| 台前县| 峨眉山市| 禹州市| 玉溪市| 忻州市| 枣阳市| 贵德县| 枣强县| 东港市|