找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Phases in Classical and Quantum Mechanics; Dariusz Chru?ciński,Andrzej Jamio?kowski Textbook 2004 Springer Science+Business Medi

[復(fù)制鏈接]
查看: 55985|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:05:59 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Phases in Classical and Quantum Mechanics
編輯Dariusz Chru?ciński,Andrzej Jamio?kowski
視頻videohttp://file.papertrans.cn/384/383586/383586.mp4
概述Several well-established geometric and topological methods are used in this work.Examines geometric phases bringing together different physical phenomena under a unified mathematical scheme.Material h
叢書名稱Progress in Mathematical Physics
圖書封面Titlebook: Geometric Phases in Classical and Quantum Mechanics;  Dariusz Chru?ciński,Andrzej Jamio?kowski Textbook 2004 Springer Science+Business Medi
描述.This work examines the beautiful and important physical concept known as the ‘geometric phase,‘ bringing together different physical phenomena under a unified mathematical and physical scheme. ...Several well-established geometric and topological methods underscore the mathematical treatment of the subject, emphasizing a coherent perspective at a rather sophisticated level. What is unique in this text is that both the quantum and classical phases are studied from a geometric point of view, providing valuable insights into their relationship that have not been previously emphasized at the textbook level. ...Key Topics and Features: ...? Background material presents basic mathematical tools on manifolds and differential forms. ...? Topological invariants (Chern classes and homotopy theory) are explained in simple and concrete language, with emphasis on physical applications. ...? Berry‘s adiabatic phase and its generalization are introduced. ...? Systematic exposition treats different geometries (e.g., symplectic and metric structures) living on a quantum phase space, in connection with both abelian and nonabelian phases. ...? Quantum mechanics is presented as classical Hamiltonian
出版日期Textbook 2004
關(guān)鍵詞Chern class; Homotopy; Matrix; classical mechanics; classical/quantum mechanics; differential geometry; ho
版次1
doihttps://doi.org/10.1007/978-0-8176-8176-0
isbn_softcover978-1-4612-6475-0
isbn_ebook978-0-8176-8176-0Series ISSN 1544-9998 Series E-ISSN 2197-1846
issn_series 1544-9998
copyrightSpringer Science+Business Media New York 2004
The information of publication is updating

書目名稱Geometric Phases in Classical and Quantum Mechanics影響因子(影響力)




書目名稱Geometric Phases in Classical and Quantum Mechanics影響因子(影響力)學(xué)科排名




書目名稱Geometric Phases in Classical and Quantum Mechanics網(wǎng)絡(luò)公開度




書目名稱Geometric Phases in Classical and Quantum Mechanics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Phases in Classical and Quantum Mechanics被引頻次




書目名稱Geometric Phases in Classical and Quantum Mechanics被引頻次學(xué)科排名




書目名稱Geometric Phases in Classical and Quantum Mechanics年度引用




書目名稱Geometric Phases in Classical and Quantum Mechanics年度引用學(xué)科排名




書目名稱Geometric Phases in Classical and Quantum Mechanics讀者反饋




書目名稱Geometric Phases in Classical and Quantum Mechanics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:57:13 | 只看該作者
Textbook 2004adiabatic phase and its generalization are introduced. ...? Systematic exposition treats different geometries (e.g., symplectic and metric structures) living on a quantum phase space, in connection with both abelian and nonabelian phases. ...? Quantum mechanics is presented as classical Hamiltonian
板凳
發(fā)表于 2025-3-22 01:17:53 | 只看該作者
1544-9998 ifferent geometries (e.g., symplectic and metric structures) living on a quantum phase space, in connection with both abelian and nonabelian phases. ...? Quantum mechanics is presented as classical Hamiltonian 978-1-4612-6475-0978-0-8176-8176-0Series ISSN 1544-9998 Series E-ISSN 2197-1846
地板
發(fā)表于 2025-3-22 05:01:25 | 只看該作者
5#
發(fā)表于 2025-3-22 10:41:54 | 只看該作者
https://doi.org/10.1007/978-3-540-75736-8unt dynamical effects but in the limit of infinitely slow changes. That is, the system is no longer static but its evolution is “infinitely slow.” A typical situation where one applies adiabatic ideas is when a physical system may be divided into two subsystems with completely different time scales:
6#
發(fā)表于 2025-3-22 14:39:35 | 只看該作者
7#
發(fā)表于 2025-3-22 17:14:38 | 只看該作者
8#
發(fā)表于 2025-3-23 00:49:33 | 只看該作者
https://doi.org/10.1007/978-3-662-64457-7What could be a classical analog of the quantum geometric phase? An obvious candidate, which is even called a phase, is the phase of harmonic motion:
9#
發(fā)表于 2025-3-23 01:28:54 | 只看該作者
https://doi.org/10.1007/978-3-642-18600-4Suppose that (., Ω) is a symplectic manifold and let . be a Lie group acting from the left on .by canonical transformations. That is, there is a mapping . such that for any . ∈ ., . defined by Φ. = Φ(., ·), is a canonical transformation:
10#
發(fā)表于 2025-3-23 07:00:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 11:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福清市| 新疆| 本溪| 平果县| 读书| 永川市| 桃园县| 东台市| 鸡西市| 巍山| 昭通市| 东丽区| 崇仁县| 左贡县| 合川市| 咸宁市| 青田县| 湘西| 莒南县| 满洲里市| 赤城县| 山丹县| 象州县| 巨鹿县| 筠连县| 壶关县| 四子王旗| 平谷区| 桂阳县| 丰都县| 视频| 郑州市| 大方县| 忻州市| 苍南县| 宿松县| 南宁市| 安岳县| 广平县| 榆中县| 正安县|