找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Patterns with Creative Coding; Coding for the Arts Sel?uk Artut Book 2023 Sel?uk Artut 2023 Creativity.Code.Patterns.Geometry.Mot

[復(fù)制鏈接]
查看: 19014|回復(fù): 41
樓主
發(fā)表于 2025-3-21 16:22:36 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Patterns with Creative Coding
副標(biāo)題Coding for the Arts
編輯Sel?uk Artut
視頻videohttp://file.papertrans.cn/384/383585/383585.mp4
概述Understand geometric patterns as the predecessors of current media arts.Learn the use of creative coding as an empowering skill to be acquired to produce complex geometric arts.Gain insight into the f
圖書封面Titlebook: Geometric Patterns with Creative Coding; Coding for the Arts Sel?uk Artut Book 2023 Sel?uk Artut 2023 Creativity.Code.Patterns.Geometry.Mot
描述Facilitate coding in generating geometric motives with a special focus on analyzing their geometric formulations.?This book aims to teach analytical coding skills by combining arts and mathematics.?.Geometric patterns are quintessentially important for understanding today’s media arts and their relationship with mathematics. With the main emphasis on this, author Sel?uk Artut proposes a certain workflow to mathematically analyze a geometric pattern and use creative coding skills to render it on a computer screen.?.When done, you‘ll understand the basics of coding and expand the provided structure to cover issues of creative coding in particular. This book will also present a?workflow to geometrically analyze and build patterns with detailed examples..What You Will Learn.Gain insight into the field of geometric patterns and its cultural value.Review dialectic creativity thattakes place between humans and computers.Use code as a creative tool to use human-computer interaction to develop one‘s creative skills.Who This Book Is For.Any person who has an interest in using coding as a creative tool. University students from Arts, Design, Architecture, and Computer Science departments. Art
出版日期Book 2023
關(guān)鍵詞Creativity; Code; Patterns; Geometry; Motif; Tessellations; Creative Coding; p5js; computers; programming; med
版次1
doihttps://doi.org/10.1007/978-1-4842-9389-8
isbn_softcover978-1-4842-9388-1
isbn_ebook978-1-4842-9389-8
copyrightSel?uk Artut 2023
The information of publication is updating

書目名稱Geometric Patterns with Creative Coding影響因子(影響力)




書目名稱Geometric Patterns with Creative Coding影響因子(影響力)學(xué)科排名




書目名稱Geometric Patterns with Creative Coding網(wǎng)絡(luò)公開度




書目名稱Geometric Patterns with Creative Coding網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Patterns with Creative Coding被引頻次




書目名稱Geometric Patterns with Creative Coding被引頻次學(xué)科排名




書目名稱Geometric Patterns with Creative Coding年度引用




書目名稱Geometric Patterns with Creative Coding年度引用學(xué)科排名




書目名稱Geometric Patterns with Creative Coding讀者反饋




書目名稱Geometric Patterns with Creative Coding讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:59:47 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:04:13 | 只看該作者
地板
發(fā)表于 2025-3-22 07:06:11 | 只看該作者
Extending the Bounds of Creativity,ects, of a single thing, circumstance, or event. The capacity to recognize diversified points of view leads to the development of original thoughts. Creativity can be defined broadly as the capacity to generate significant new ideas, forms, approaches, interpretations, etc. that deviate from convent
5#
發(fā)表于 2025-3-22 09:11:54 | 只看該作者
6#
發(fā)表于 2025-3-22 13:14:23 | 只看該作者
7#
發(fā)表于 2025-3-22 19:10:47 | 只看該作者
,J?ger, Bauern, E-Man: Heureka!,Use of Hand Tools vs. Creative Coding Methods
8#
發(fā)表于 2025-3-22 23:08:52 | 只看該作者
9#
發(fā)表于 2025-3-23 02:58:33 | 只看該作者
Generating a Basic Geometric Pattern,Use of Hand Tools vs. Creative Coding Methods
10#
發(fā)表于 2025-3-23 08:26:28 | 只看該作者
Workflows on Generating Geometric Patterns with Creative Coding,Observe the geometric pattern, and analyze it to distinguish its constituent repeating motif.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 10:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临安市| 普兰店市| 雷波县| 铁岭县| 岳池县| 兴城市| 洪洞县| 若尔盖县| 奈曼旗| 来安县| 平度市| 阿城市| 永善县| 富顺县| 高安市| 武义县| 高尔夫| 乌海市| 东兴市| 响水县| 河东区| 永定县| 麦盖提县| 荆门市| 肥西县| 乌兰察布市| 安仁县| 荃湾区| 山东| 敦煌市| 本溪| 吴桥县| 黄陵县| 廉江市| 乌拉特后旗| 璧山县| 穆棱市| 云南省| 兴化市| 会宁县| 社旗县|