找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Partial Differential Equations; Antonin Chambolle,Matteo Novaga,Enrico Valdinoci Conference proceedings 2013 Scuola Normale Supe

[復(fù)制鏈接]
查看: 48041|回復(fù): 54
樓主
發(fā)表于 2025-3-21 18:38:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Partial Differential Equations
編輯Antonin Chambolle,Matteo Novaga,Enrico Valdinoci
視頻videohttp://file.papertrans.cn/384/383584/383584.mp4
概述Presentation of selected topics of current research in geometric partial differential equations.Authors are recognized international experts
叢書名稱Publications of the Scuola Normale Superiore
圖書封面Titlebook: Geometric Partial Differential Equations;  Antonin Chambolle,Matteo Novaga,Enrico Valdinoci Conference proceedings 2013 Scuola Normale Supe
描述This book is the outcome of a conference held at the Centro De Giorgi of the Scuola Normale of Pisa in September 2012. The aim of the conference was to discuss recent results on nonlinear partial differential equations, and more specifically geometric evolutions and reaction-diffusion equations. Particular attention was paid to self-similar solutions, such as solitons and travelling waves, asymptotic behaviour, formation of singularities and qualitative properties of solutions. These problems arise in many models from Physics, Biology, Image Processing and Applied Mathematics in general, and have attracted a lot of attention in recent years.
出版日期Conference proceedings 2013
關(guān)鍵詞calculus of variations; geometric analysis; mathematical analysis; partial differential equations
版次1
doihttps://doi.org/10.1007/978-88-7642-473-1
isbn_softcover978-88-7642-472-4
isbn_ebook978-88-7642-473-1Series ISSN 2239-1460 Series E-ISSN 2532-1668
issn_series 2239-1460
copyrightScuola Normale Superiore 2013
The information of publication is updating

書目名稱Geometric Partial Differential Equations影響因子(影響力)




書目名稱Geometric Partial Differential Equations影響因子(影響力)學(xué)科排名




書目名稱Geometric Partial Differential Equations網(wǎng)絡(luò)公開度




書目名稱Geometric Partial Differential Equations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Partial Differential Equations被引頻次




書目名稱Geometric Partial Differential Equations被引頻次學(xué)科排名




書目名稱Geometric Partial Differential Equations年度引用




書目名稱Geometric Partial Differential Equations年度引用學(xué)科排名




書目名稱Geometric Partial Differential Equations讀者反饋




書目名稱Geometric Partial Differential Equations讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:53:57 | 只看該作者
On general existence results for one-dimensional singular diffusion equations with spatially inhomoic continuous initial datum. The notion of a viscosity solution used here is the same as proposed by Giga, Giga and Rybka, who established a comparison principle. We construct the global-in-time solution by careful adaptation of Perron’s method.
板凳
發(fā)表于 2025-3-22 03:57:52 | 只看該作者
Maximally localized Wannier functions: existence and exponential localization, localization functional introduced in [22] and we review some rigorous results about the existence and exponential localization of its minimizers, in dimension . ≤ 3. The proof combines ideas and methods from the Calculus of Variations and the regularity theory for harmonic maps between Riemannian manifolds.
地板
發(fā)表于 2025-3-22 07:16:42 | 只看該作者
5#
發(fā)表于 2025-3-22 08:51:42 | 只看該作者
2239-1460 This book is the outcome of a conference held at the Centro De Giorgi of the Scuola Normale of Pisa in September 2012. The aim of the conference was to discuss recent results on nonlinear partial differential equations, and more specifically geometric evolutions and reaction-diffusion equations. Par
6#
發(fā)表于 2025-3-22 15:37:48 | 只看該作者
7#
發(fā)表于 2025-3-22 19:10:13 | 只看該作者
Tanja Adamus,Anke Marks,Alexander Sperl localization functional introduced in [22] and we review some rigorous results about the existence and exponential localization of its minimizers, in dimension . ≤ 3. The proof combines ideas and methods from the Calculus of Variations and the regularity theory for harmonic maps between Riemannian manifolds.
8#
發(fā)表于 2025-3-22 21:52:06 | 只看該作者
9#
發(fā)表于 2025-3-23 04:00:46 | 只看該作者
Flows by powers of centro-affine curvature,dimension (. ? 1). This information is exploited in ?. to show that these flows shrink any admissible surface to a point and that, up to .(3) transformations, the rescaled images of the evolving surface converge, in the Hausdorff metric, to a ball.
10#
發(fā)表于 2025-3-23 08:31:18 | 只看該作者
2239-1460 itative properties of solutions. These problems arise in many models from Physics, Biology, Image Processing and Applied Mathematics in general, and have attracted a lot of attention in recent years.978-88-7642-472-4978-88-7642-473-1Series ISSN 2239-1460 Series E-ISSN 2532-1668
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 14:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东平县| 合江县| 西昌市| 巴彦县| 长岭县| 通州区| 梨树县| 淳安县| 古蔺县| 肇州县| 通许县| 林州市| 抚松县| 额敏县| 清苑县| 攀枝花市| 晴隆县| 禹州市| 汉寿县| 错那县| 白玉县| 南昌市| 赤城县| 福州市| 邢台县| 信丰县| 尖扎县| 莆田市| 昭通市| 东光县| 桃江县| 房产| 桂林市| 曲沃县| 偃师市| 桦川县| 大埔区| 离岛区| 固原市| 黄龙县| 玛曲县|