找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Geometric Numerical Integration; Structure-Preserving Ernst Hairer,Gerhard Wanner,Christian Lubich Book 20021st edition Springer-Verlag Ber

[復(fù)制鏈接]
樓主: 滲漏
41#
發(fā)表于 2025-3-28 17:35:00 | 只看該作者
Die übrigen Kleearten bzw. Futterleguminosenthem. In particular, we study projection methods and methods based on local coordinates of the manifold defined by the invariants. We discuss in some detail the case where the manifold is a Lie group.
42#
發(fā)表于 2025-3-28 20:09:35 | 只看該作者
Curt F. Kollbrunner,Nikola Hajdinion, which is a formal series in powers of the step size, has to be truncated. The error, induced by such a truncation, can be made exponentially small, and the results remain valid on exponentially long time intervals.
43#
發(fā)表于 2025-3-29 01:54:04 | 只看該作者
44#
發(fā)表于 2025-3-29 06:36:13 | 只看該作者
45#
發(fā)表于 2025-3-29 07:22:14 | 只看該作者
Examples and Numerical Experiments,ffects (on a different scale) occur with more sophisticated higher-order integration schemes. The experiments presented here should serve as a motivation for the theoretical and practical investigations of later chapters. The reader is encouraged to repeat the experiments or to invent similar ones.
46#
發(fā)表于 2025-3-29 11:28:13 | 只看該作者
47#
發(fā)表于 2025-3-29 18:32:16 | 只看該作者
Order Conditions, Trees and B-Series,recently found interesting applications in quantum field theory. The chapter terminates with the Baker-CampbellHausdorff formula, which allows another access to the order properties of composition and splitting methods.
48#
發(fā)表于 2025-3-29 22:12:06 | 只看該作者
Symmetric Integration and Reversibility,Runge-Kutta and composition methods, and we show how standard approaches for solving differential equations on manifolds can be symmetrized. A theoretical explanation of the excellent longtime behaviour of symmetric methods applied to reversible differential equations will be given in Chap. XI.
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 00:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
张掖市| 正镶白旗| 江油市| 镇康县| 上饶县| 锡林郭勒盟| 平江县| 北安市| 苍南县| 舒兰市| 信阳市| 双江| 安义县| 灌云县| 蛟河市| 若尔盖县| 松潘县| 本溪市| 体育| 沙坪坝区| 霍山县| 黔西县| 卓资县| 紫阳县| 公主岭市| 合山市| 友谊县| 通城县| 阿荣旗| 临澧县| 巫溪县| 克拉玛依市| 安西县| 余姚市| 永胜县| 澄迈县| 保山市| 桑植县| 万年县| 舒兰市| 松桃|