找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Numerical Integration; Structure-Preserving Ernst Hairer,Gerhard Wanner,Christian Lubich Book 20021st edition Springer-Verlag Ber

[復(fù)制鏈接]
樓主: 滲漏
21#
發(fā)表于 2025-3-25 03:43:28 | 只看該作者
https://doi.org/10.1007/978-3-662-05018-7Hamiltonian and reversible systems; Numerical integration; calculus; differential equation; differential
22#
發(fā)表于 2025-3-25 10:37:50 | 只看該作者
23#
發(fā)表于 2025-3-25 15:32:54 | 只看該作者
24#
發(fā)表于 2025-3-25 17:03:24 | 只看該作者
25#
發(fā)表于 2025-3-25 21:41:13 | 只看該作者
Andreas Patyk,Guido A. Reinhardtsses of numerical methods. We start with Runge-Kutta and collocation methods, and we introduce discontinuous collocation methods, which cover essentially all high-order implicit Runge-Kutta methods of interest. We then treat partitioned Runge-Kutta methods and Nystr?m methods, which can be applied t
26#
發(fā)表于 2025-3-26 02:47:01 | 只看該作者
27#
發(fā)表于 2025-3-26 07:51:27 | 只看該作者
Die übrigen Kleearten bzw. Futterleguminosenn manifolds. Our investigation will follow two directions. We first investigate which of the methods introduced in Chap. II conserve invariants automatically. We shall see that most of them conserve linear invariants, a few of them quadratic invariants, and none of them conserves cubic or general no
28#
發(fā)表于 2025-3-26 12:08:33 | 只看該作者
F. Bazzoli,R. B?hmer,H. J. Weiss. We discuss reversible differential equations and reversible maps, and we explain how symmetric integrators are related to them. We study symmetric Runge-Kutta and composition methods, and we show how standard approaches for solving differential equations on manifolds can be symmetrized. A theoret
29#
發(fā)表于 2025-3-26 14:52:44 | 只看該作者
30#
發(fā)表于 2025-3-26 17:03:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
山东省| 桐梓县| 科技| 永康市| 玉溪市| 凤山县| 遂平县| 炎陵县| 兰溪市| 扬州市| 敦化市| 休宁县| 华池县| 吉林省| 丰原市| 准格尔旗| 永年县| 板桥市| 邓州市| 博野县| 拉孜县| 闽清县| 班戈县| 常熟市| 江达县| 甘南县| 马山县| 区。| 旬阳县| 建阳市| 西昌市| 东海县| 莱州市| 钟山县| 布拖县| 城口县| 文水县| 麻城市| 临夏市| 如东县| 通河县|