找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Numerical Integration; Structure-Preserving Ernst Hairer,Gerhard Wanner,Christian Lubich Book 20021st edition Springer-Verlag Ber

[復(fù)制鏈接]
樓主: 滲漏
21#
發(fā)表于 2025-3-25 03:43:28 | 只看該作者
https://doi.org/10.1007/978-3-662-05018-7Hamiltonian and reversible systems; Numerical integration; calculus; differential equation; differential
22#
發(fā)表于 2025-3-25 10:37:50 | 只看該作者
23#
發(fā)表于 2025-3-25 15:32:54 | 只看該作者
24#
發(fā)表于 2025-3-25 17:03:24 | 只看該作者
25#
發(fā)表于 2025-3-25 21:41:13 | 只看該作者
Andreas Patyk,Guido A. Reinhardtsses of numerical methods. We start with Runge-Kutta and collocation methods, and we introduce discontinuous collocation methods, which cover essentially all high-order implicit Runge-Kutta methods of interest. We then treat partitioned Runge-Kutta methods and Nystr?m methods, which can be applied t
26#
發(fā)表于 2025-3-26 02:47:01 | 只看該作者
27#
發(fā)表于 2025-3-26 07:51:27 | 只看該作者
Die übrigen Kleearten bzw. Futterleguminosenn manifolds. Our investigation will follow two directions. We first investigate which of the methods introduced in Chap. II conserve invariants automatically. We shall see that most of them conserve linear invariants, a few of them quadratic invariants, and none of them conserves cubic or general no
28#
發(fā)表于 2025-3-26 12:08:33 | 只看該作者
F. Bazzoli,R. B?hmer,H. J. Weiss. We discuss reversible differential equations and reversible maps, and we explain how symmetric integrators are related to them. We study symmetric Runge-Kutta and composition methods, and we show how standard approaches for solving differential equations on manifolds can be symmetrized. A theoret
29#
發(fā)表于 2025-3-26 14:52:44 | 只看該作者
30#
發(fā)表于 2025-3-26 17:03:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南昌县| 扶余县| 股票| 东山县| 清徐县| 渑池县| 江山市| 温宿县| 屏山县| 咸宁市| 佛学| 浦城县| 阳曲县| 阳西县| 陇南市| 漯河市| 陇川县| 彰化县| 五河县| 三穗县| 噶尔县| 泰宁县| 沾益县| 嘉禾县| 恩施市| 峡江县| 获嘉县| 连平县| 清镇市| 班戈县| 武冈市| 开阳县| 潍坊市| 阿城市| 讷河市| 黄大仙区| 霞浦县| 桦甸市| 五寨县| 福建省| 红桥区|