找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Multiplication of Vectors; An Introduction to G Miroslav Josipovi? Textbook 2019 Springer Nature Switzerland AG 2019 geometric (C

[復(fù)制鏈接]
查看: 50516|回復(fù): 41
樓主
發(fā)表于 2025-3-21 19:43:45 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometric Multiplication of Vectors
副標(biāo)題An Introduction to G
編輯Miroslav Josipovi?
視頻videohttp://file.papertrans.cn/384/383576/383576.mp4
概述An excellent starting point for beginners in the field.An advanced high school student can learn basic concepts from the book.Gradual introduction of concepts with many figures and solved examples
叢書名稱Compact Textbooks in Mathematics
圖書封面Titlebook: Geometric Multiplication of Vectors; An Introduction to G Miroslav Josipovi? Textbook 2019 Springer Nature Switzerland AG 2019 geometric (C
描述.This book enables the reader to discover elementary concepts of geometric algebra and its applications with lucid and direct explanations. Why would one want to explore geometric algebra? What if there existed a universal mathematical language that allowed one: to make rotations in any dimension with simple formulas, to see spinors or the Pauli matrices and their products, to solve problems of the special theory of relativity in three-dimensional Euclidean space, to formulate quantum mechanics without the imaginary unit, to easily solve difficult problems of electromagnetism, to treat the Kepler problem with the formulas for a harmonic oscillator, to eliminate unintuitive matrices and tensors, to unite many branches of mathematical physics? What if it were possible to use that same framework to generalize the complex numbers or fractals to any dimension, to play with geometry on a computer, as well as to make calculations in robotics, ray-tracing and brain science? In addition, what if such a language provided a clear, geometric interpretation of mathematical objects, even for the imaginary unit in quantum mechanics? Such a mathematical language exists and it is called geometric a
出版日期Textbook 2019
關(guān)鍵詞geometric (Clifford) algebra; rotations; spinors; quaternions; multivectors; Euclidean space; relativity; q
版次1
doihttps://doi.org/10.1007/978-3-030-01756-9
isbn_softcover978-3-030-01755-2
isbn_ebook978-3-030-01756-9Series ISSN 2296-4568 Series E-ISSN 2296-455X
issn_series 2296-4568
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Geometric Multiplication of Vectors影響因子(影響力)




書目名稱Geometric Multiplication of Vectors影響因子(影響力)學(xué)科排名




書目名稱Geometric Multiplication of Vectors網(wǎng)絡(luò)公開度




書目名稱Geometric Multiplication of Vectors網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Multiplication of Vectors被引頻次




書目名稱Geometric Multiplication of Vectors被引頻次學(xué)科排名




書目名稱Geometric Multiplication of Vectors年度引用




書目名稱Geometric Multiplication of Vectors年度引用學(xué)科排名




書目名稱Geometric Multiplication of Vectors讀者反饋




書目名稱Geometric Multiplication of Vectors讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:06:15 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:12:08 | 只看該作者
Appendix,erefore, we can define the exponential function of the elements of a geometric algebra. In .3, we have four important types of elements (numbers): . (dual numbers, square to zero), . (square to ?1), . (square to 1), and . (square to itself). Nilpotents are the easiest to deal with: the expansion (?)
地板
發(fā)表于 2025-3-22 04:56:04 | 只看該作者
5#
發(fā)表于 2025-3-22 10:05:23 | 只看該作者
Euclidean 3D Geometric Algebra (,3),unit pseudoscalar . commutes with all elements of the algebra and squares to ?1, and therefore, it is an ideal replacement for the ordinary imaginary unit (there are many “imaginary units” in GA). A pseudoscalar with such properties will appear again in .7, .11, … (see E10). Here we often use a very useful form of a multivector:
6#
發(fā)表于 2025-3-22 15:02:58 | 只看該作者
Human Dignity as a Global Common GoodConsider two consecutive boosts in arbitrary directions and let us try to express them as a product of a boost and a rotation. For the hyperbolic sine and cosine we use the abbreviations . and ., while for the sine and cosine we use . and .. We have
7#
發(fā)表于 2025-3-22 19:11:23 | 只看該作者
https://doi.org/10.1007/978-981-97-6117-3We know how to multiply unit vectors; therefore, we can try to find some objects to . them. For vectors in .3, we need three parameters (three coordinates), and the geometric product is noncommutative. Consequently, we can choose matrices; 2?×?2 complex matrices will be enough. Matrices are a common choice for various representations.
8#
發(fā)表于 2025-3-22 23:23:35 | 只看該作者
The Dirty, Working-Class Problem,Checking directly, we get .. Similarly, it is easy to obtain by a direct multiplication
9#
發(fā)表于 2025-3-23 03:58:35 | 只看該作者
Applications,Consider two consecutive boosts in arbitrary directions and let us try to express them as a product of a boost and a rotation. For the hyperbolic sine and cosine we use the abbreviations . and ., while for the sine and cosine we use . and .. We have
10#
發(fā)表于 2025-3-23 08:24:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 03:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
井冈山市| 屯昌县| 凤冈县| 寻甸| 郁南县| 湾仔区| 三河市| 永年县| 鄂尔多斯市| 湖州市| 诸城市| 信阳市| 阿拉善右旗| 永年县| 呈贡县| 冷水江市| 富锦市| 阿拉善右旗| 公安县| 湘乡市| 玉环县| 长宁县| 宝应县| 文昌市| 西畴县| 建昌县| 保康县| 苍溪县| 根河市| 邓州市| 盈江县| 台东市| 浦东新区| 济南市| 苏尼特右旗| 石楼县| 五台县| 杭锦旗| 延安市| 特克斯县| 武定县|