找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Modelling; Dagstuhl 1993 H. Hagen,G. Farin,H. Noltemeier Conference proceedings 1995 Springer-Verlag/Wien 1995 Nurbs.Spline.Splin

[復(fù)制鏈接]
樓主: INFER
31#
發(fā)表于 2025-3-26 23:33:55 | 只看該作者
32#
發(fā)表于 2025-3-27 04:45:44 | 只看該作者
,New Work – eine neue Zeit bricht an,lied to show that the Generalized Ball basis of degree . is always unimodal whenever . is odd and is never unimodal whenever . is even except for the cases . = 2, 4. A new proof of the unimodality of the Bernstein basis is also provided.
33#
發(fā)表于 2025-3-27 06:18:59 | 只看該作者
https://doi.org/10.1007/978-3-642-36436-5es. This paper summarizes the fundamentals of the theory of Nef polyhedra and illustrates them by means of simple 2D examples. The notions of Nef polyhedron, locally adjoined pyramid and face of a Nef polyhedron are carefully explained. Data structures for representing Nef polyhedra are discussed, a
34#
發(fā)表于 2025-3-27 13:31:05 | 只看該作者
35#
發(fā)表于 2025-3-27 14:38:24 | 只看該作者
36#
發(fā)表于 2025-3-27 17:48:09 | 只看該作者
37#
發(fā)表于 2025-3-28 01:54:38 | 只看該作者
38#
發(fā)表于 2025-3-28 04:55:25 | 只看該作者
https://doi.org/10.1007/978-3-7091-9813-1struction of A. Overhauser is one of the earliest examples after Ferguson [8]. Besides its extreme simplicity and robustness, this spline (in the cardinal case) deserves some interest because of its affine invariance. This allows a complete analysis of its shape-preserving properties, which is given
39#
發(fā)表于 2025-3-28 06:55:00 | 只看該作者
https://doi.org/10.1007/978-3-7091-4181-6ng planar cubic B-spline curves by subsequently removing and reinserting knots. Instead our new algorithm is based on the idea of subsequently changing one control point of a given B-spline curve so that the new curve minimizes the integral of the squared /-th derivative of the B-spline curve. How t
40#
發(fā)表于 2025-3-28 13:56:37 | 只看該作者
Werbewirkung als Basis für den Werbeerfolgo reduce time and costs during the product development cycle. In this paper, an investigation into the nature of this integration problem is performed, followed by the specification of a series of requirements on CAD systems to support it. Guided by these pragmatic requirements, we present an approa
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
忻城县| 同仁县| 土默特左旗| 故城县| 安阳市| 建瓯市| 马尔康县| 高邑县| 阿克苏市| 宜兰市| 神木县| 德惠市| 宽甸| 加查县| 含山县| 大洼县| 大厂| 泽普县| 汝南县| 西丰县| 漯河市| 民乐县| 大冶市| 子长县| 大连市| 独山县| 保定市| 尤溪县| 东乡县| 宁晋县| 安陆市| 通渭县| 汉阴县| 巴东县| 花垣县| 弥渡县| 民乐县| 曲麻莱县| 灌云县| 巫溪县| 宁南县|