找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Modelling; Dagstuhl 2002 Stefanie Hahmann,Guido Brunnett,Ron Goldman Conference proceedings 2004 Springer-Verlag/Wien 2004 3D.CAM

[復(fù)制鏈接]
樓主: Hayes
31#
發(fā)表于 2025-3-27 00:11:17 | 只看該作者
Biorthogonal Loop-Subdivision Wavelets,e recursively defined by Loop subdivision for arbitrary manifold triangle meshes. We orthogonalize our wavelets with respect to local scaling functions. This way, the wavelet analysis computes locally a least squares fit when reducing the resolution and converting geometric detail into sparse wavele
32#
發(fā)表于 2025-3-27 02:55:45 | 只看該作者
Fairness Criteria for Algebraic Curves,ding energy. In addition, we take certain feasibility criteria for the algebraic curve segment into account. We describe a computational technique for the variational design of algebraic curves, using an SQP (sequential quadratic programming) — type method for constrained optimization. As demonstrat
33#
發(fā)表于 2025-3-27 08:02:03 | 只看該作者
Spline Curve Approximation and Design by Optimal Control Over the Knots,mization such as in [16] is that it can handle both approximation and interpolation. Moreover a cost function is introduced to implement a design objective (shortest curve, smoothest one etc...). The present work introduces the Optimal Control over the knot vectors of non-uniform B-Splines. Violatio
34#
發(fā)表于 2025-3-27 10:20:27 | 只看該作者
35#
發(fā)表于 2025-3-27 17:26:50 | 只看該作者
36#
發(fā)表于 2025-3-27 19:08:53 | 只看該作者
,Bounding the Distance between 2D Parametric Bézier Curves and their Control Polygon,ic Bézier curve and a parameterization of its control polygon based on the Greville abscissae. Several of the norms appearing in these bounds are orientation dependent. We next present algorithms for finding the optimal orientation angle for which two of these norms become minimal. The use of these
37#
發(fā)表于 2025-3-27 22:30:42 | 只看該作者
38#
發(fā)表于 2025-3-28 05:12:07 | 只看該作者
39#
發(fā)表于 2025-3-28 06:27:42 | 只看該作者
40#
發(fā)表于 2025-3-28 11:06:31 | 只看該作者
Robust Spherical Parameterization of Triangular Meshes,phing. Closed, manifold, genus-0 meshes are topologically equivalent to a sphere, hence this is the natural parameter domain for them. Parameterizing a 3D triangle mesh onto the 3D sphere means assigning a 3D position on the unit sphere to each of the mesh vertices, such that the spherical triangles
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 18:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江安县| 太仆寺旗| 秭归县| 阜康市| 司法| 会理县| 宾阳县| 突泉县| 陇南市| 平阴县| 桃园县| 桐城市| 鱼台县| 泸水县| 阿勒泰市| 青海省| 白河县| 滦南县| 扎赉特旗| 万荣县| 台州市| 高淳县| 太原市| 朝阳区| 荔浦县| 长泰县| 康平县| 盈江县| 枝江市| 饶阳县| 渝中区| 昌邑市| 肃北| 余庆县| 兰溪市| 昭苏县| 大同县| 林口县| 宝丰县| 临潭县| 西乡县|