找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in the Algebraic Theory of Quadratic Forms; Summer School, Lens, Oleg T. Izhboldin,Bruno Kahn,Alexander Vishik,Jean Book

[復(fù)制鏈接]
查看: 8866|回復(fù): 42
樓主
發(fā)表于 2025-3-21 17:20:07 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Methods in the Algebraic Theory of Quadratic Forms
副標(biāo)題Summer School, Lens,
編輯Oleg T. Izhboldin,Bruno Kahn,Alexander Vishik,Jean
視頻videohttp://file.papertrans.cn/384/383560/383560.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Geometric Methods in the Algebraic Theory of Quadratic Forms; Summer School, Lens, Oleg T. Izhboldin,Bruno Kahn,Alexander Vishik,Jean Book
描述.The geometric approach to the algebraic theory of quadratic forms is the study of projective quadrics over arbitrary fields. Function fields of quadrics have been central to the proofs of fundamental results since the 1960‘s. Recently, more refined geometric tools have been brought to bear on this topic, such as Chow groups and motives, and have produced remarkable advances on a number of outstanding problems. Several aspects of these new methods are addressed in this volume, which includes an introduction to motives of quadrics by A. Vishik, with various applications, notably to the splitting patterns of quadratic forms, papers by O. Izhboldin and N. Karpenko on Chow groups of quadrics and their stable birational equivalence, with application to the construction of fields with?u-invariant 9, and a contribution in French by B. Kahn which lays out a general framework for the computation of the unramified cohomology groups of quadrics and other cellular varieties..
出版日期Book 2004
關(guān)鍵詞Chow groups; Cohomology; Dimension; Quadratic forms; algebra; motives; unramified cohomology
版次1
doihttps://doi.org/10.1007/b94827
isbn_softcover978-3-540-20728-3
isbn_ebook978-3-540-40990-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 2004
The information of publication is updating

書目名稱Geometric Methods in the Algebraic Theory of Quadratic Forms影響因子(影響力)




書目名稱Geometric Methods in the Algebraic Theory of Quadratic Forms影響因子(影響力)學(xué)科排名




書目名稱Geometric Methods in the Algebraic Theory of Quadratic Forms網(wǎng)絡(luò)公開度




書目名稱Geometric Methods in the Algebraic Theory of Quadratic Forms網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Methods in the Algebraic Theory of Quadratic Forms被引頻次




書目名稱Geometric Methods in the Algebraic Theory of Quadratic Forms被引頻次學(xué)科排名




書目名稱Geometric Methods in the Algebraic Theory of Quadratic Forms年度引用




書目名稱Geometric Methods in the Algebraic Theory of Quadratic Forms年度引用學(xué)科排名




書目名稱Geometric Methods in the Algebraic Theory of Quadratic Forms讀者反饋




書目名稱Geometric Methods in the Algebraic Theory of Quadratic Forms讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:32:51 | 只看該作者
Dynamik in Struktur und Kultur,ster’s dissertation. His work investigated the cohomologies of function fields over fields of finite characteristic and contained some original ideas; it was later published. My reservations about giving him this particular problem for his annual paper were due mostly to the fact that Oleg might eas
板凳
發(fā)表于 2025-3-22 04:26:24 | 只看該作者
0075-8434 ut a general framework for the computation of the unramified cohomology groups of quadrics and other cellular varieties..978-3-540-20728-3978-3-540-40990-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
地板
發(fā)表于 2025-3-22 07:57:51 | 只看該作者
Geometric Methods in the Algebraic Theory of Quadratic FormsSummer School, Lens,
5#
發(fā)表于 2025-3-22 12:24:11 | 只看該作者
Appendix: My Recollections About Oleg Izhboldin,ster’s dissertation. His work investigated the cohomologies of function fields over fields of finite characteristic and contained some original ideas; it was later published. My reservations about giving him this particular problem for his annual paper were due mostly to the fact that Oleg might eas
6#
發(fā)表于 2025-3-22 15:44:12 | 只看該作者
7#
發(fā)表于 2025-3-22 20:00:23 | 只看該作者
8#
發(fā)表于 2025-3-22 23:01:39 | 只看該作者
9#
發(fā)表于 2025-3-23 04:18:13 | 只看該作者
10#
發(fā)表于 2025-3-23 06:40:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
孟州市| 塘沽区| 凤冈县| 当涂县| 进贤县| 青龙| 岫岩| 天柱县| 堆龙德庆县| 泽州县| 万年县| 贡嘎县| 陵川县| 法库县| 八宿县| 大英县| 灵山县| 潼关县| 双流县| 定日县| 岑溪市| 丰镇市| 广平县| 游戏| 石嘴山市| 景洪市| 金寨县| 车险| 涪陵区| 漳州市| 永胜县| 阿拉善盟| 东至县| 和田县| 涟水县| 化州市| 昌都县| 黎平县| 阿瓦提县| 石柱| 松阳县|