找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in Physics XXXIX; Workshop, Bia?ystok, Piotr Kielanowski,Alina Dobrogowska,Tomasz Golińsk Conference proceedings 2023 The

[復(fù)制鏈接]
樓主: Tyler
31#
發(fā)表于 2025-3-26 23:29:00 | 只看該作者
32#
發(fā)表于 2025-3-27 04:12:12 | 只看該作者
Dynamics of Electromechanical Systems, associated with two Killing vectors. In addition, there are hidden symmetries related to the Killing tensors. Building on the explicit form of the conformal Killing–Yano tensor for the PD metric with conformal factor, we determine the associated conformal Killing tensors, the conformal Killing and
33#
發(fā)表于 2025-3-27 07:30:28 | 只看該作者
https://doi.org/10.1007/978-981-10-2603-4written as a linear combination of two different algebroid structures. By specifying vector fields . and .? on a given manifold, it is possible to construct a family of Lie algebroids determined by these vector fields. Specializing the Lie algebroid to the case of a Lie algebra on a linear space .?,
34#
發(fā)表于 2025-3-27 12:18:14 | 只看該作者
35#
發(fā)表于 2025-3-27 16:42:41 | 只看該作者
978-3-031-30286-2The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
36#
發(fā)表于 2025-3-27 21:28:15 | 只看該作者
Geometric Methods in Physics XXXIX978-3-031-30284-8Series ISSN 2297-0215 Series E-ISSN 2297-024X
37#
發(fā)表于 2025-3-28 00:12:17 | 只看該作者
https://doi.org/10.1007/978-3-031-30284-8Quantization; Classical field theory; Quantum field theory; Infinite-dimensional groups; Integrable syst
38#
發(fā)表于 2025-3-28 05:22:17 | 只看該作者
Piotr Kielanowski,Alina Dobrogowska,Tomasz GolińskProvides an overview of cutting-edge research in geometry, analysis, and a wide variety of other areas.Offers insight into recent developments at the intersection of mathematics and physics.Collects p
39#
發(fā)表于 2025-3-28 07:40:19 | 只看該作者
40#
發(fā)表于 2025-3-28 12:04:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
资兴市| 房山区| 新宾| 林甸县| 达孜县| 和静县| 香格里拉县| 新疆| 当阳市| 安阳县| 涿州市| 博野县| 化州市| 克拉玛依市| 罗山县| 镇沅| 巫溪县| 清涧县| 九台市| 社旗县| 澎湖县| 东阿县| 临夏县| 乌拉特中旗| 武定县| 夏河县| 牙克石市| 永福县| 灵台县| 天祝| 富顺县| 西吉县| 观塘区| 保德县| 古田县| 河池市| 大新县| 周宁县| 襄汾县| 高邑县| 花莲县|