找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in Physics; XXXIII Workshop, Bia Piotr Kielanowski,Pierre Bieliavsky,Theodore Voron Conference proceedings 2015 Springer

[復(fù)制鏈接]
查看: 45469|回復(fù): 58
樓主
發(fā)表于 2025-3-21 19:15:30 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Methods in Physics
副標(biāo)題XXXIII Workshop, Bia
編輯Piotr Kielanowski,Pierre Bieliavsky,Theodore Voron
視頻videohttp://file.papertrans.cn/384/383552/383552.mp4
概述Provides an overview of the current state of application of geometry in modern physics.Presents mathematically precise discussions of important topics in physics.Features contributions by leading scie
叢書名稱Trends in Mathematics
圖書封面Titlebook: Geometric Methods in Physics; XXXIII Workshop, Bia Piotr Kielanowski,Pierre Bieliavsky,Theodore Voron Conference proceedings 2015 Springer
描述?This book presents a selection of papers based on the XXXIII Bia?owie?a Workshop on Geometric Methods in Physics, 2014. The Bia?owie?a Workshops are among the most important meetings in the field and attract researchers from both mathematics and physics. The articles gathered here are mathematically rigorous and have important physical implications, addressing the application of geometry in classical and quantum physics. Despite their long tradition, the workshops remain at the cutting edge of ongoing research. For the last several years, each Bia?owie?a Workshop has been followed by a School on Geometry and Physics, where advanced lectures for graduate students and young researchers are presented; some of the lectures are reproduced here. The unique atmosphere of the workshop and school is enhanced by its venue, framed by the natural beauty of the Bia?owie?a forest in eastern Poland..The volume will be of interest to researchers and graduate students in mathematical physics, theoretical physics and mathematmtics..
出版日期Conference proceedings 2015
關(guān)鍵詞Lie groupoids and algebroids; Poisson and non-commutative geometry; integrable systems; mathematical ph
版次1
doihttps://doi.org/10.1007/978-3-319-18212-4
isbn_softcover978-3-319-38745-1
isbn_ebook978-3-319-18212-4Series ISSN 2297-0215 Series E-ISSN 2297-024X
issn_series 2297-0215
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書目名稱Geometric Methods in Physics影響因子(影響力)




書目名稱Geometric Methods in Physics影響因子(影響力)學(xué)科排名




書目名稱Geometric Methods in Physics網(wǎng)絡(luò)公開度




書目名稱Geometric Methods in Physics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Methods in Physics被引頻次




書目名稱Geometric Methods in Physics被引頻次學(xué)科排名




書目名稱Geometric Methods in Physics年度引用




書目名稱Geometric Methods in Physics年度引用學(xué)科排名




書目名稱Geometric Methods in Physics讀者反饋




書目名稱Geometric Methods in Physics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:33:43 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:45:31 | 只看該作者
On the Moduli Space of Yang–Mills Fields on ,ce is much better understood, the proof of conjecture will help to clarify the structure of the moduli space of Yang–Mills fields. We propose an idea how to prove the harmonic spheres conjecture using the twistor methods.
地板
發(fā)表于 2025-3-22 06:10:13 | 只看該作者
5#
發(fā)表于 2025-3-22 08:48:23 | 只看該作者
6#
發(fā)表于 2025-3-22 15:12:10 | 只看該作者
7#
發(fā)表于 2025-3-22 20:44:00 | 只看該作者
Future Research and Applications,amples, we review a noncommutative . and construct a gauge theory on it. We also give details of the proof showing that the noncommutative . constructed in this paper coincides with the one given by Bordemann, Brischle, Emmrich and Waldmann [1].
8#
發(fā)表于 2025-3-23 00:36:59 | 只看該作者
9#
發(fā)表于 2025-3-23 02:25:30 | 只看該作者
10#
發(fā)表于 2025-3-23 08:54:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 05:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
个旧市| 舒兰市| 台湾省| 张北县| 日土县| 张家川| 张家口市| 叙永县| 芦山县| 大姚县| 阳原县| 略阳县| 临高县| 项城市| 普兰店市| 五常市| 武义县| 敦化市| 韶关市| 金坛市| 久治县| 太谷县| 蓬安县| 承德县| 屯留县| 兴文县| 楚雄市| 科技| 永泰县| 南溪县| 治多县| 拉孜县| 肃北| 广河县| 古交市| 庆城县| 新和县| 永德县| 都江堰市| 紫金县| 平顶山市|