找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in Physics; XXXIV Workshop, Bia? Piotr Kielanowski,S. Twareque Ali,Theodore Voronov Conference proceedings 2016 Springer

[復(fù)制鏈接]
查看: 32643|回復(fù): 54
樓主
發(fā)表于 2025-3-21 19:15:03 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Methods in Physics
副標(biāo)題XXXIV Workshop, Bia?
編輯Piotr Kielanowski,S. Twareque Ali,Theodore Voronov
視頻videohttp://file.papertrans.cn/384/383551/383551.mp4
概述Provides an up-to-date overview of geometry applications in modern physics.Offers mathematically precise discussions of essential topics in physics.Features a special session devoted to the achievemen
叢書名稱Trends in Mathematics
圖書封面Titlebook: Geometric Methods in Physics; XXXIV Workshop, Bia? Piotr Kielanowski,S. Twareque Ali,Theodore Voronov Conference proceedings 2016 Springer
描述.This book features a selection of articles based on the XXXIV Bia?owie?a Workshop on Geometric Methods in Physics, 2015. The articles presented are mathematically rigorous, include important physical implications and address the application of geometry in classical and quantum physics. Special attention deserves the session devoted to discussions of Gerard Emch‘s most important and lasting achievements in mathematical physics.. .The Bia?owie?a workshops are among the most important meetings in the field and gather participants from mathematics and physics alike. Despite their long tradition, the Workshops remain at the cutting edge of ongoing research. For the past several years, the Bia?owie?a Workshop has been followed by a School on Geometry and Physics, where advanced lectures for graduate students and young researchers are presented. The unique atmosphere of the Workshop and School is enhanced by the venue, framed by the natural beauty of the Bia?owie?a forest in eastern Poland..
出版日期Conference proceedings 2016
關(guān)鍵詞mathematical physics; integrable systems; quantization; Gerard Emch; Lie groupoids and algebroids
版次1
doihttps://doi.org/10.1007/978-3-319-31756-4
isbn_softcover978-3-319-81110-9
isbn_ebook978-3-319-31756-4Series ISSN 2297-0215 Series E-ISSN 2297-024X
issn_series 2297-0215
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

書目名稱Geometric Methods in Physics影響因子(影響力)




書目名稱Geometric Methods in Physics影響因子(影響力)學(xué)科排名




書目名稱Geometric Methods in Physics網(wǎng)絡(luò)公開度




書目名稱Geometric Methods in Physics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Methods in Physics被引頻次




書目名稱Geometric Methods in Physics被引頻次學(xué)科排名




書目名稱Geometric Methods in Physics年度引用




書目名稱Geometric Methods in Physics年度引用學(xué)科排名




書目名稱Geometric Methods in Physics讀者反饋




書目名稱Geometric Methods in Physics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:54:54 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:29:29 | 只看該作者
地板
發(fā)表于 2025-3-22 05:52:13 | 只看該作者
https://doi.org/10.1007/978-3-319-56502-6d one set of numerator polynomials. In contrast, the module of (.)-covariants is non-free when |.| ≥ . and a generalized integrity basis has to be introduced to throw light on the Molien function. A graphical representation of the algebraic structures of the free and non-free modules is proposed.
5#
發(fā)表于 2025-3-22 10:40:12 | 只看該作者
978-3-319-81110-9Springer International Publishing Switzerland 2016
6#
發(fā)表于 2025-3-22 15:13:44 | 只看該作者
Geometric Methods in Physics978-3-319-31756-4Series ISSN 2297-0215 Series E-ISSN 2297-024X
7#
發(fā)表于 2025-3-22 17:33:27 | 只看該作者
8#
發(fā)表于 2025-3-22 21:59:57 | 只看該作者
9#
發(fā)表于 2025-3-23 04:48:00 | 只看該作者
10#
發(fā)表于 2025-3-23 08:41:46 | 只看該作者
https://doi.org/10.1007/978-1-4757-3955-8In this article, we give an alternative proof of the Helton–Howe–Carey–Pincus trace formula using Krein’s trace formula.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
霸州市| 怀远县| 永德县| 沾益县| 贵南县| 公安县| 深圳市| 田东县| 永善县| 家居| 南通市| 新建县| 南丰县| 湘阴县| 淮南市| 曲周县| 裕民县| 大渡口区| 邵阳县| 黔东| 沅江市| 隆尧县| 聂拉木县| 灵川县| 清原| 吴川市| 绥棱县| 汝州市| 门头沟区| 昌宁县| 辽源市| 元谋县| 新民市| 马尔康县| 西丰县| 临邑县| 綦江县| 红原县| 平罗县| 治多县| 惠水县|