找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in Inverse Problems and PDE Control; Christopher B. Croke,Michael S. Vogelius,Irena Las Conference proceedings 2004 Spri

[復(fù)制鏈接]
樓主: 黑暗社會
41#
發(fā)表于 2025-3-28 15:16:01 | 只看該作者
42#
發(fā)表于 2025-3-28 22:26:54 | 只看該作者
Ray Transform and Some Rigidity Problems for Riemannian Metrics,arises in the linearization of the boundary rigidity problem which is discussed in Section 1. In Section 2 we introduce a class of Riemannian manifolds, convex non-trapping manifolds (CNTM), for which the ray transform can be defined in a very natural way. In the case of positive rank tensor fields,
43#
發(fā)表于 2025-3-29 00:05:34 | 只看該作者
The Cauchy Data and the Scattering Relation,e inverse problem of determining a metric of a Riemannian manifold (with boundary) from the dynamic Dirichlet-to-Neumann map associated with the wave equation. Although these results are very satisfactory it requires too much information. By just looking at the singularities of the dynamic Dirichlet
44#
發(fā)表于 2025-3-29 03:42:13 | 只看該作者
,Inverse Resonance Problem for ?2-Symmetric Analytic Obstacles in the Plane,les. It is the analogue for exterior domains of the proof that a mirror symmetric bounded simply connected analytic plane domain is determined by its Dirichlet eigenvalues. The proof uses ‘interior/exterior duality’ to simplify the argument.
45#
發(fā)表于 2025-3-29 08:32:29 | 只看該作者
46#
發(fā)表于 2025-3-29 12:50:32 | 只看該作者
el of its numerous - searchers. The decision to organize the 1908 International Congress of Mathematicians in Rome (after those in Paris and Heidelberg) confirmed this position. Qualified Italian universities were permanently included in the tour organized for young mathematicians’ improvement. Even
47#
發(fā)表于 2025-3-29 15:58:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 03:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
深泽县| 尤溪县| 平山县| 陇西县| 始兴县| 沙洋县| 重庆市| 石屏县| 华池县| 安新县| 肥西县| 莱西市| 筠连县| 崇义县| 庄河市| 房产| 鹤庆县| 威信县| 湖北省| 锦州市| 嘉黎县| 扬州市| 理塘县| 兰西县| 蒲城县| 石台县| 秀山| 双牌县| 昂仁县| 左云县| 汝城县| 浪卡子县| 花莲县| 滨州市| 都匀市| 门头沟区| 双鸭山市| 天长市| 怀远县| 海门市| 龙泉市|