找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods and Applications; For Computer Science Jean Gallier Textbook 20011st edition Springer Science+Business Media New York 20

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 23:51:04 | 只看該作者
32#
發(fā)表于 2025-3-27 04:12:16 | 只看該作者
33#
發(fā)表于 2025-3-27 08:54:02 | 只看該作者
Singular Value Decomposition (SVD) and Polar Form,In this section we assume that we are dealing with a real Euclidean space .. Let . → . be any linear map. In general, it may not be possible to diagonalize a linear map ..
34#
發(fā)表于 2025-3-27 10:53:06 | 只看該作者
Basics of the Differential Geometry of Curves,In this chapter we consider parametric curves, and we introduce two important invariants, curvature and torsion (in the case of a 3D curve).
35#
發(fā)表于 2025-3-27 17:21:20 | 只看該作者
Appendix,Given a vector space . over a field ., a linear map . →. is called a .. The set of all linear forms . → . is a vector space called the . and denoted by .*. We now prove that hyperplanes are precisely the Kernels of nonnull linear forms.
36#
發(fā)表于 2025-3-27 19:41:50 | 只看該作者
37#
發(fā)表于 2025-3-27 23:50:00 | 只看該作者
38#
發(fā)表于 2025-3-28 02:52:30 | 只看該作者
Basics of Affine Geometry, Typically, one is also interested in geometric properties invariant under certain transformations, for example, translations, rotations, projections, etc. One could model the space of points as a vector space, but this is not very satisfactory for a number of reasons. One reason is that the point c
39#
發(fā)表于 2025-3-28 10:07:55 | 只看該作者
40#
發(fā)表于 2025-3-28 10:26:17 | 只看該作者
Embedding an Affine Space in a Vector Space,universes. It is often more convenient, at least mathematically, to deal with linear objects (vector spaces, linear combinations, linear maps), rather than affine objects (affine spaces, affine combinations, affine maps). Actually, it would also be advantageous if we could manipulate points and vect
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 01:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昭觉县| 玉山县| 都江堰市| 岗巴县| 泰宁县| 工布江达县| 庆安县| 正安县| 永登县| 张家口市| 琼海市| 韩城市| 财经| 长武县| 荆门市| 南靖县| 朝阳县| 榆中县| 高青县| 呼伦贝尔市| 济南市| 岐山县| 通榆县| 措美县| 庆云县| 盐津县| 分宜县| 成安县| 安远县| 珠海市| 磐石市| 惠州市| 房产| 平乡县| 肇东市| 若尔盖县| 沅陵县| 玛多县| 方正县| 平潭县| 黔江区|