找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Method for Stability of Non-Linear Elastic Thin Shells; Jordanka Ivanova,Franco Pastrone Book 2002 Springer Science+Business Med

[復(fù)制鏈接]
查看: 17765|回復(fù): 39
樓主
發(fā)表于 2025-3-21 16:03:45 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometric Method for Stability of Non-Linear Elastic Thin Shells
編輯Jordanka Ivanova,Franco Pastrone
視頻videohttp://file.papertrans.cn/384/383538/383538.mp4
圖書封面Titlebook: Geometric Method for Stability of Non-Linear Elastic Thin Shells;  Jordanka Ivanova,Franco Pastrone Book 2002 Springer Science+Business Med
描述PREFACE This book deals with the new developments and applications of the geometric method to the nonlinear stability problem for thin non-elastic shells. There are no other published books on this subject except the basic ones of A. V. Pogorelov (1966,1967,1986), where variational principles defined over isometric surfaces, are postulated, and applied mainly to static and dynamic problems of elastic isotropic thin shells. A. V. Pogorelov (Harkov, Ukraine) was the first to provide in his monographs the geometric construction of the deformed shell surface in a post-critical stage and deriving explicitely the asymptotic formulas for the upper and lower critical loads. In most cases, these formulas were presented in a closed analytical form, and confirmed by experimental data. The geometric method by Pogorelov is one of the most important analytical methods developed during the last century. Its power consists in its ability to provide a clear geometric picture of the postcritical form of a deformed shell surface, successfully applied to a direct variational approach to the nonlinear shell stability problems. Until now most Pogorelov‘s monographs were written in Russian, which limited
出版日期Book 2002
關(guān)鍵詞construction; deformation; instability; shells; stability
版次1
doihttps://doi.org/10.1007/978-1-4615-1511-1
isbn_softcover978-1-4613-5590-8
isbn_ebook978-1-4615-1511-1
copyrightSpringer Science+Business Media New York 2002
The information of publication is updating

書目名稱Geometric Method for Stability of Non-Linear Elastic Thin Shells影響因子(影響力)




書目名稱Geometric Method for Stability of Non-Linear Elastic Thin Shells影響因子(影響力)學(xué)科排名




書目名稱Geometric Method for Stability of Non-Linear Elastic Thin Shells網(wǎng)絡(luò)公開度




書目名稱Geometric Method for Stability of Non-Linear Elastic Thin Shells網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Method for Stability of Non-Linear Elastic Thin Shells被引頻次




書目名稱Geometric Method for Stability of Non-Linear Elastic Thin Shells被引頻次學(xué)科排名




書目名稱Geometric Method for Stability of Non-Linear Elastic Thin Shells年度引用




書目名稱Geometric Method for Stability of Non-Linear Elastic Thin Shells年度引用學(xué)科排名




書目名稱Geometric Method for Stability of Non-Linear Elastic Thin Shells讀者反饋




書目名稱Geometric Method for Stability of Non-Linear Elastic Thin Shells讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:27:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:59:50 | 只看該作者
Variational Principle for the Global Stability of Elasto-Plastic Thin Shells,ymptotic approximation of isometric transformation is a non-trivial solution of Monge-Amper’s equation. Following the second asymptotic iteration of the corresponding partial differential equations we obtain the ordinary differential equations for the functions regularizing the solution. These funct
地板
發(fā)表于 2025-3-22 04:42:49 | 只看該作者
Book 2002. Its power consists in its ability to provide a clear geometric picture of the postcritical form of a deformed shell surface, successfully applied to a direct variational approach to the nonlinear shell stability problems. Until now most Pogorelov‘s monographs were written in Russian, which limited
5#
發(fā)表于 2025-3-22 09:51:46 | 只看該作者
6#
發(fā)表于 2025-3-22 14:48:00 | 只看該作者
Dubbel: Taschenbuch für den Maschinenbauymptotic approximation of isometric transformation is a non-trivial solution of Monge-Amper’s equation. Following the second asymptotic iteration of the corresponding partial differential equations we obtain the ordinary differential equations for the functions regularizing the solution. These funct
7#
發(fā)表于 2025-3-22 17:25:26 | 只看該作者
8#
發(fā)表于 2025-3-22 22:47:52 | 只看該作者
9#
發(fā)表于 2025-3-23 04:01:19 | 只看該作者
Crushing of Plastic Cylindrical Shells Sensitive to the Strain Rate under Axial Impact,ed structures and with those features of the process which are necessary for predicting the structure behaviour. We shall use various methods and approximation techniques [1–4, 10, 83, 116–117, 119, 142, 158, 210, 228–232, 251–256].
10#
發(fā)表于 2025-3-23 07:27:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岱山县| 上栗县| 东兴市| 乌兰察布市| 佛冈县| 济阳县| 伊川县| 湟中县| 裕民县| 松滋市| 和林格尔县| 定西市| 会昌县| 栾城县| 莫力| 龙口市| 星座| 大英县| 新乡市| 台东市| 淅川县| 梁河县| 金坛市| 陆河县| 留坝县| 普陀区| 浙江省| 濮阳市| 随州市| 新乡市| 五河县| 广州市| 瓮安县| 阳春市| 星子县| 衡阳市| 临沂市| 秀山| 广元市| 嵩明县| 遂平县|