找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Mechanics on Riemannian Manifolds; Applications to Part Ovidiu Calin,Der-Chen Chang Textbook 2005 Birkh?user Boston 2005 Calculus

[復制鏈接]
查看: 16292|回復: 35
樓主
發(fā)表于 2025-3-21 18:00:48 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometric Mechanics on Riemannian Manifolds
副標題Applications to Part
編輯Ovidiu Calin,Der-Chen Chang
視頻videohttp://file.papertrans.cn/384/383537/383537.mp4
概述A geometric approach to problems in physics, many of which cannot be solved by any other methods.Text is enriched with good examples and exercises at the end of every chapter.Fine for a course or semi
叢書名稱Applied and Numerical Harmonic Analysis
圖書封面Titlebook: Geometric Mechanics on Riemannian Manifolds; Applications to Part Ovidiu Calin,Der-Chen Chang Textbook 2005 Birkh?user Boston 2005 Calculus
描述.Differential geometry techniques have very useful and important applications in partial differential equations and quantum mechanics. This work presents a purely geometric treatment of problems in physics involving quantum harmonic oscillators, quartic oscillators, minimal surfaces, and Schr?dinger‘s, Einstein‘s and Newton‘s equations. ..Geometric Mechanics on Riemannian Manifolds. is a fine text for a course or seminar directed at graduate and advanced undergraduate students interested in elliptic and hyperbolic differential equations, differential geometry, calculus of variations, quantum mechanics, and physics. The text is enriched with good examples and exercises at the end of every chapter. It is also an ideal resource for pure and applied mathematicians and theoretical physicists working in these areas..
出版日期Textbook 2005
關鍵詞Calculus of Variations; Euler–Lagrange equation; Fourier transform; Minimal surface; Potential; different
版次1
doihttps://doi.org/10.1007/b138771
isbn_ebook978-0-8176-4421-5Series ISSN 2296-5009 Series E-ISSN 2296-5017
issn_series 2296-5009
copyrightBirkh?user Boston 2005
The information of publication is updating

書目名稱Geometric Mechanics on Riemannian Manifolds影響因子(影響力)




書目名稱Geometric Mechanics on Riemannian Manifolds影響因子(影響力)學科排名




書目名稱Geometric Mechanics on Riemannian Manifolds網絡公開度




書目名稱Geometric Mechanics on Riemannian Manifolds網絡公開度學科排名




書目名稱Geometric Mechanics on Riemannian Manifolds被引頻次




書目名稱Geometric Mechanics on Riemannian Manifolds被引頻次學科排名




書目名稱Geometric Mechanics on Riemannian Manifolds年度引用




書目名稱Geometric Mechanics on Riemannian Manifolds年度引用學科排名




書目名稱Geometric Mechanics on Riemannian Manifolds讀者反饋




書目名稱Geometric Mechanics on Riemannian Manifolds讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:24:09 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:50:33 | 只看該作者
Birkh?user Boston 2005
地板
發(fā)表于 2025-3-22 07:19:03 | 只看該作者
5#
發(fā)表于 2025-3-22 10:39:17 | 只看該作者
Textbook 2005nts a purely geometric treatment of problems in physics involving quantum harmonic oscillators, quartic oscillators, minimal surfaces, and Schr?dinger‘s, Einstein‘s and Newton‘s equations. ..Geometric Mechanics on Riemannian Manifolds. is a fine text for a course or seminar directed at graduate and
6#
發(fā)表于 2025-3-22 14:52:20 | 只看該作者
7#
發(fā)表于 2025-3-22 17:23:36 | 只看該作者
Textbook 2005echanics, and physics. The text is enriched with good examples and exercises at the end of every chapter. It is also an ideal resource for pure and applied mathematicians and theoretical physicists working in these areas..
8#
發(fā)表于 2025-3-22 23:09:37 | 只看該作者
9#
發(fā)表于 2025-3-23 04:06:00 | 只看該作者
10#
發(fā)表于 2025-3-23 07:50:10 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 01:07
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
攀枝花市| 张北县| 夏津县| 鄄城县| 桃园县| 赣榆县| 凯里市| 新邵县| 积石山| 德庆县| 雷州市| 黎川县| 九龙城区| 通许县| 白沙| 崇义县| 千阳县| 顺平县| 泗水县| 西畴县| 丰县| 昌平区| 含山县| 肇庆市| 周宁县| 开阳县| 兖州市| 会泽县| 镇巴县| 都匀市| 永宁县| 游戏| 柯坪县| 山丹县| 大荔县| 千阳县| 石台县| 深水埗区| 盐城市| 报价| 侯马市|