找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Measure Theory and Real Analysis; Luigi Ambrosio Conference proceedings 2014 Scuola Normale Superiore Pisa 2014 Heisenberg group

[復(fù)制鏈接]
查看: 11203|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:05:02 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Measure Theory and Real Analysis
編輯Luigi Ambrosio
視頻videohttp://file.papertrans.cn/384/383534/383534.mp4
概述Covers very recent developments, partially unpublished at the time of the school.Covers the most exciting developments in this research area
叢書名稱Publications of the Scuola Normale Superiore
圖書封面Titlebook: Geometric Measure Theory and Real Analysis;  Luigi Ambrosio Conference proceedings 2014 Scuola Normale Superiore Pisa 2014 Heisenberg group
描述.In 2013, a school on Geometric Measure Theory and Real Analysis, organized by G. Alberti, C. De Lellis and myself, took place at the Centro De Giorgi in Pisa, with lectures by V. Bogachev, R. Monti, E. Spadaro and D. Vittone..The book collects the notes of the courses. The courses provide a deep and up to date insight on challenging mathematical problems and their recent developments: infinite-dimensional analysis, minimal surfaces and isoperimetric problems in the Heisenberg group, regularity of sub-Riemannian geodesics and the regularity theory of minimal currents in any dimension and codimension.
出版日期Conference proceedings 2014
關(guān)鍵詞Heisenberg group; Sobolev classes; regularity problem
版次1
doihttps://doi.org/10.1007/978-88-7642-523-3
isbn_softcover978-88-7642-522-6
isbn_ebook978-88-7642-523-3Series ISSN 2239-1460 Series E-ISSN 2532-1668
issn_series 2239-1460
copyrightScuola Normale Superiore Pisa 2014
The information of publication is updating

書目名稱Geometric Measure Theory and Real Analysis影響因子(影響力)




書目名稱Geometric Measure Theory and Real Analysis影響因子(影響力)學(xué)科排名




書目名稱Geometric Measure Theory and Real Analysis網(wǎng)絡(luò)公開度




書目名稱Geometric Measure Theory and Real Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Measure Theory and Real Analysis被引頻次




書目名稱Geometric Measure Theory and Real Analysis被引頻次學(xué)科排名




書目名稱Geometric Measure Theory and Real Analysis年度引用




書目名稱Geometric Measure Theory and Real Analysis年度引用學(xué)科排名




書目名稱Geometric Measure Theory and Real Analysis讀者反饋




書目名稱Geometric Measure Theory and Real Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:12:50 | 只看該作者
Diagnostics and Endpoint Detection,ectures aim to explain partially without proofs the main steps of a new proof of the partial regularity of area minimizing integer rectifiable currents in higher codimension, due originally to F. Almgren, which is contained in a series of papers in collaboration with C. De Lellis (University of Zürich).
板凳
發(fā)表于 2025-3-22 03:28:18 | 只看該作者
地板
發(fā)表于 2025-3-22 08:31:42 | 只看該作者
Drupal 8 for Absolute Beginnersplications in the most diverse areas of mathematics. So it does not come as a surprise that their infinite-dimensional analogs attract considerable attention. It was already at the end of the 60s and the beginning of the 70s of the last century that in the works of N. N. Frolov, Yu. L. Daletski?, L.
5#
發(fā)表于 2025-3-22 10:30:21 | 只看該作者
6#
發(fā)表于 2025-3-22 13:09:50 | 只看該作者
7#
發(fā)表于 2025-3-22 21:01:35 | 只看該作者
8#
發(fā)表于 2025-3-23 00:31:02 | 只看該作者
Isoperimetric problem and minimal surfaces in the Heisenberg group,The 2. +1-dimensional Heisenberg group is the manifold ?. = ?. × ?, . ? ?, endowed with the group product
9#
發(fā)表于 2025-3-23 03:57:38 | 只看該作者
10#
發(fā)表于 2025-3-23 09:11:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 13:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
随州市| 庆云县| 盐池县| 阳新县| 阳新县| 乌什县| 铁岭市| 新和县| 辰溪县| 高清| 沈阳市| 瓮安县| 嘉义县| 星座| 邵阳县| 石城县| 罗平县| 北安市| 英超| 芜湖市| 稷山县| 开平市| 泾川县| 徐闻县| 青神县| 深州市| 科技| 平邑县| 正宁县| 青田县| 凭祥市| 冷水江市| 两当县| 砚山县| 通渭县| 武定县| 阳江市| 淮安市| 滁州市| 屏东市| 精河县|