找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Measure Theory and Free Boundary Problems; Cetraro, Italy 2019 Guido De Philippis,Xavier Ros-Oton,Georg S. Weiss, Book 2021 The E

[復(fù)制鏈接]
查看: 46357|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:24:22 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Geometric Measure Theory and Free Boundary Problems
副標(biāo)題Cetraro, Italy 2019
編輯Guido De Philippis,Xavier Ros-Oton,Georg S. Weiss,
視頻videohttp://file.papertrans.cn/384/383532/383532.mp4
概述Presents three lectures by leading experts.Provides an in-depth exploration of recent advances.Includes extensive background and references
叢書(shū)名稱(chēng)Lecture Notes in Mathematics
圖書(shū)封面Titlebook: Geometric Measure Theory and Free Boundary Problems; Cetraro, Italy 2019 Guido De Philippis,Xavier Ros-Oton,Georg S. Weiss, Book 2021 The E
描述.This volume covers contemporary aspects of geometric measure theory with a focus on applications to partial differential equations, free boundary problems and water waves. It is based on lectures given at the 2019 CIME summer school “Geometric Measure Theory and Applications – From Geometric Analysis to Free Boundary Problems” which took place in Cetraro, Italy, under the scientific direction of Matteo Focardi and Emanuele Spadaro...Providing a description of the structure of measures satisfying certain differential constraints, and covering regularity theory for Bernoulli type free boundary problems and water waves as well as regularity theory for the obstacle problems and the developments leading to applications to the Stefan problem, this volume will be of interest to students and researchers in mathematical analysis and its applications. .
出版日期Book 2021
關(guān)鍵詞Free Boundary Problems; Geometric Measure Theory; Manifolds and Measure-geometric Topics; Minimal Hyper
版次1
doihttps://doi.org/10.1007/978-3-030-65799-4
isbn_softcover978-3-030-65798-7
isbn_ebook978-3-030-65799-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Geometric Measure Theory and Free Boundary Problems影響因子(影響力)




書(shū)目名稱(chēng)Geometric Measure Theory and Free Boundary Problems影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Geometric Measure Theory and Free Boundary Problems網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Geometric Measure Theory and Free Boundary Problems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Geometric Measure Theory and Free Boundary Problems被引頻次




書(shū)目名稱(chēng)Geometric Measure Theory and Free Boundary Problems被引頻次學(xué)科排名




書(shū)目名稱(chēng)Geometric Measure Theory and Free Boundary Problems年度引用




書(shū)目名稱(chēng)Geometric Measure Theory and Free Boundary Problems年度引用學(xué)科排名




書(shū)目名稱(chēng)Geometric Measure Theory and Free Boundary Problems讀者反饋




書(shū)目名稱(chēng)Geometric Measure Theory and Free Boundary Problems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:10:27 | 只看該作者
0075-8434 roblems and water waves as well as regularity theory for the obstacle problems and the developments leading to applications to the Stefan problem, this volume will be of interest to students and researchers in mathematical analysis and its applications. .978-3-030-65798-7978-3-030-65799-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
板凳
發(fā)表于 2025-3-22 01:10:00 | 只看該作者
0075-8434 This volume covers contemporary aspects of geometric measure theory with a focus on applications to partial differential equations, free boundary problems and water waves. It is based on lectures given at the 2019 CIME summer school “Geometric Measure Theory and Applications – From Geometric Analysi
地板
發(fā)表于 2025-3-22 08:01:52 | 只看該作者
CNS Stimulants and Athletic Performance,terested in the science of water waves..In this course I will introduce Bernoulli type free boundary problems which play an important role in free surface fluid flow. Apart from basic regularity results I will discuss singularities as well as free boundary theory of water waves.
5#
發(fā)表于 2025-3-22 10:48:55 | 只看該作者
Book 2021blems and water waves. It is based on lectures given at the 2019 CIME summer school “Geometric Measure Theory and Applications – From Geometric Analysis to Free Boundary Problems” which took place in Cetraro, Italy, under the scientific direction of Matteo Focardi and Emanuele Spadaro...Providing a
6#
發(fā)表于 2025-3-22 16:05:00 | 只看該作者
Bernoulli Type Free Boundary Problems and Water Waves,terested in the science of water waves..In this course I will introduce Bernoulli type free boundary problems which play an important role in free surface fluid flow. Apart from basic regularity results I will discuss singularities as well as free boundary theory of water waves.
7#
發(fā)表于 2025-3-22 18:15:15 | 只看該作者
8#
發(fā)表于 2025-3-22 21:30:27 | 只看該作者
9#
發(fā)表于 2025-3-23 05:22:35 | 只看該作者
Regularity of Free Boundaries in Obstacle Problems, is one of the main results for which he got the Wolf Prize in 2012 and the Shaw Prize in 2018..The goal of these notes is to introduce the obstacle problem, prove some of the main known results in this context, and give an overview of more recent research on this topic.
10#
發(fā)表于 2025-3-23 09:24:18 | 只看該作者
978-3-030-65798-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肃北| 哈密市| 繁昌县| 文登市| 珲春市| 万源市| 阜康市| 新安县| 页游| 元氏县| 井研县| 东方市| 鹤壁市| 吕梁市| 松潘县| 鄂伦春自治旗| 建阳市| 孝义市| 东至县| 富源县| 汽车| 绥芬河市| 邵阳县| 大足县| 虹口区| 临泉县| 甘洛县| 若尔盖县| 谢通门县| 沁水县| 岳西县| 宜城市| 普定县| 陆良县| 平远县| 禹城市| 鄯善县| 昌平区| 工布江达县| 定安县| 金山区|