找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Invariant Theory for Polarized Curves; Gilberto Bini,Fabio Felici,Filippo Viviani Book 2014 Springer International Publishing Sw

[復(fù)制鏈接]
樓主: 閃爍
11#
發(fā)表于 2025-3-23 10:24:52 | 只看該作者
Daily Routines and Sources of Income,The aim of this chapter is to collect the definitions and basic properties of the curves that we will deal with throughout the manuscript.
12#
發(fā)表于 2025-3-23 17:52:28 | 只看該作者
Hallucinogens and Related Drugs,The aim of this chapter is to collect all the combinatorial results that will be used in the sequel.
13#
發(fā)表于 2025-3-23 20:24:44 | 只看該作者
Xanthines (Caffeine) and Nicotine,In this chapter we review some basic material on Geometric Invariant Theory.
14#
發(fā)表于 2025-3-24 01:35:11 | 只看該作者
Central Nervous System (CNS) Depressants,The aim of this chapter is to generalize the Potential stability theorem (see Fact?4.22) for smaller values of .. The main result is the following theorem, which we call Potential pseudo-stability Theorem because of its relations with the pseudo-stable curves (see Definition?.(ii)).
15#
發(fā)表于 2025-3-24 02:46:49 | 只看該作者
https://doi.org/10.1007/978-1-4684-1176-8Let . be a Chow semistable point of Hilb. with . connected and .?>?2(2. ? 2). Note that . is a quasi-wp-stable curve by Corollary?.(i), . is balanced and . is non-degenerate and linearly normal in ?.. by the Potential pseudo-stability Theorem?..
16#
發(fā)表于 2025-3-24 07:28:53 | 只看該作者
17#
發(fā)表于 2025-3-24 13:18:13 | 只看該作者
18#
發(fā)表于 2025-3-24 17:09:22 | 只看該作者
19#
發(fā)表于 2025-3-24 21:00:28 | 只看該作者
Medical Affairs and Professional Services,The aim of this chapter is to describe the points of Hilb. that are Hilbert or Chow semistable, polystable and stable for . The range . will be investigated later.
20#
發(fā)表于 2025-3-25 02:24:14 | 只看該作者
https://doi.org/10.1007/978-3-319-57696-1In this chapter, we will use the criterion of stability for tails (Proposition?.) in order to study the stability of elliptic curves for .. We notice that in this range—by the basic inequality (.)—it suffices to consider the elliptic curves of degree 4.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 21:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黔南| 监利县| 青岛市| 台中市| 班玛县| 静宁县| 通山县| 盈江县| 阳新县| 米脂县| 大化| 德令哈市| 屏东县| 沙田区| 工布江达县| 华安县| 阜平县| 鄂温| 田林县| 原阳县| 东港市| 遂平县| 铜鼓县| 库尔勒市| 白银市| 孟连| 普陀区| 吉隆县| 蒙山县| 兰西县| 甘泉县| 嵩明县| 屏南县| 陕西省| 子长县| 宣城市| 英山县| 宕昌县| 定兴县| 哈巴河县| 吉林省|