找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Invariant Theory; Over the Real and Co Nolan R. Wallach Textbook 2017 Nolan R. Wallach 2017 Hilbert-Mumford theorem.Kostant cone.

[復(fù)制鏈接]
查看: 40588|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:36:51 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Invariant Theory
副標(biāo)題Over the Real and Co
編輯Nolan R. Wallach
視頻videohttp://file.papertrans.cn/384/383527/383527.mp4
概述Designed for non-mathematicians, physics students as well for example, who want to learn about this important area of mathematics.Well organized and touches upon the main subjects, which offer a deepe
叢書名稱Universitext
圖書封面Titlebook: Geometric Invariant Theory; Over the Real and Co Nolan R. Wallach Textbook 2017 Nolan R. Wallach 2017 Hilbert-Mumford theorem.Kostant cone.
描述.Geometric Invariant Theory (GIT) is developed in this text within the context of algebraic geometry over the real and complex numbers. This sophisticated topic is elegantly presented with enough background theory included to make the text accessible to advanced graduate students in mathematics and physics with diverse backgrounds in algebraic and differential geometry.? Throughout the book, examples are emphasized. Exercises add to the reader’s understanding of the material; most are enhanced with hints. ..The exposition is divided into two parts. The first part, ‘Background Theory’, is organized as a reference for the rest of the book. It contains two chapters developing material in complex and real algebraic geometry and algebraic groups that are difficult to find in the literature. Chapter 1 emphasizes the relationship between the Zariski topology and the canonical Hausdorff?topology of an algebraic variety over the complex numbers. Chapter 2 develops the interaction between Lie groups and algebraic groups. Part 2, ‘Geometric Invariant Theory’ consists of three chapters (3–5). Chapter 3 centers on the Hilbert–Mumford theorem and contains a complete development of the Kempf–Ness
出版日期Textbook 2017
關(guān)鍵詞Hilbert-Mumford theorem; Kostant cone; Lie theory and invariant theory; algebraic geometry; geometric in
版次1
doihttps://doi.org/10.1007/978-3-319-65907-7
isbn_softcover978-3-319-65905-3
isbn_ebook978-3-319-65907-7Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightNolan R. Wallach 2017
The information of publication is updating

書目名稱Geometric Invariant Theory影響因子(影響力)




書目名稱Geometric Invariant Theory影響因子(影響力)學(xué)科排名




書目名稱Geometric Invariant Theory網(wǎng)絡(luò)公開度




書目名稱Geometric Invariant Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Invariant Theory被引頻次




書目名稱Geometric Invariant Theory被引頻次學(xué)科排名




書目名稱Geometric Invariant Theory年度引用




書目名稱Geometric Invariant Theory年度引用學(xué)科排名




書目名稱Geometric Invariant Theory讀者反饋




書目名稱Geometric Invariant Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:03:03 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:54:18 | 只看該作者
The Affine Theorys of algebraic groups and Lie group actions. As indicated in the preface two proofs of the Hilbert–Mumford theorem are given. The first is a relatively simple Lie group oriented proof of the original characterization of the elements of the zero set of non-constant homogeneous invariants (the null co
地板
發(fā)表于 2025-3-22 07:46:36 | 只看該作者
5#
發(fā)表于 2025-3-22 12:38:36 | 只看該作者
Background of Drug Interactions,c theorems in algebraic geometry (and differential geometry) are stated with references, many to [GW], while others are given proofs. There are complete proofs of most of the statements that relate to the interplay between algebraic and differential geometry.
6#
發(fā)表于 2025-3-22 13:19:43 | 只看該作者
https://doi.org/10.1007/978-1-4899-3298-3us ideal of polynomials vanishing on this orbit. Much of the exposition in this chapter explains the analogous results for the case of reducible representations (based on Kostant’s methods and including some results of Brion). To carry out Kostant’s ideas we need to recall the theory of roots and weights.
7#
發(fā)表于 2025-3-22 20:21:51 | 只看該作者
Algebraic Geometryc theorems in algebraic geometry (and differential geometry) are stated with references, many to [GW], while others are given proofs. There are complete proofs of most of the statements that relate to the interplay between algebraic and differential geometry.
8#
發(fā)表于 2025-3-23 00:44:05 | 只看該作者
9#
發(fā)表于 2025-3-23 03:52:24 | 只看該作者
10#
發(fā)表于 2025-3-23 08:41:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
罗山县| 丰原市| 环江| 平安县| 莱阳市| 古田县| 乌兰浩特市| 志丹县| 涡阳县| 兴业县| 噶尔县| 潮州市| 漳浦县| 大埔县| 鲁甸县| 清苑县| 凤城市| 安泽县| 涿鹿县| 庆城县| 武平县| 桂阳县| 安阳市| 友谊县| 伊吾县| 营山县| 大同市| 陵水| 邢台县| 黎城县| 贵德县| 长兴县| 博野县| 忻州市| 教育| 邳州市| 屯门区| 济宁市| 克拉玛依市| 南皮县| 成武县|