找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Integration Theory; Steven Krantz,Harold Parks Textbook 2008 Birkh?user Boston 2008 Area formula.Plateau‘s problem.currents.diff

[復(fù)制鏈接]
查看: 16471|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:39:02 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Integration Theory
編輯Steven Krantz,Harold Parks
視頻videohttp://file.papertrans.cn/384/383525/383525.mp4
概述Self-contained, inclusive, and accessible for both the graduate students and researchers.Motivates the key ideas with examples and figures.Includes considerable background material and complete proofs
叢書名稱Cornerstones
圖書封面Titlebook: Geometric Integration Theory;  Steven Krantz,Harold Parks Textbook 2008 Birkh?user Boston 2008 Area formula.Plateau‘s problem.currents.diff
描述Geometric measure theory has roots going back to ancient Greek mathematics, for considerations of the isoperimetric problem (to ?nd the planar domain of given perimeter having greatest area) led naturally to questions about spatial regions and boundaries. In more modern times, the Plateau problem is considered to be the wellspring of questions in geometric measure theory. Named in honor of the nineteenth century Belgian physicist Joseph Plateau, who studied surface tension phenomena in general, andsoap?lmsandsoapbubblesinparticular,thequestion(initsoriginalformulation) was to show that a ?xed, simple, closed curve in three-space will bound a surface of the type of a disk and having minimal area. Further, one wishes to study uniqueness for this minimal surface, and also to determine its other properties. Jesse Douglas solved the original Plateau problem by considering the minimal surfacetobeaharmonicmapping(whichoneseesbystudyingtheDirichletintegral). For this work he was awarded the Fields Medal in 1936. Unfortunately, Douglas’s methods do not adapt well to higher dimensions, so it is desirable to ?nd other techniques with broader applicability. Enter the theory of currents. Curren
出版日期Textbook 2008
關(guān)鍵詞Area formula; Plateau‘s problem; currents; differential forms; geometric measure theory; linear functiona
版次1
doihttps://doi.org/10.1007/978-0-8176-4679-0
isbn_ebook978-0-8176-4679-0Series ISSN 2197-182X Series E-ISSN 2197-1838
issn_series 2197-182X
copyrightBirkh?user Boston 2008
The information of publication is updating

書目名稱Geometric Integration Theory影響因子(影響力)




書目名稱Geometric Integration Theory影響因子(影響力)學(xué)科排名




書目名稱Geometric Integration Theory網(wǎng)絡(luò)公開度




書目名稱Geometric Integration Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Integration Theory被引頻次




書目名稱Geometric Integration Theory被引頻次學(xué)科排名




書目名稱Geometric Integration Theory年度引用




書目名稱Geometric Integration Theory年度引用學(xué)科排名




書目名稱Geometric Integration Theory讀者反饋




書目名稱Geometric Integration Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:55:59 | 只看該作者
Birkh?user Boston 2008
板凳
發(fā)表于 2025-3-22 01:37:54 | 只看該作者
Geometric Integration Theory978-0-8176-4679-0Series ISSN 2197-182X Series E-ISSN 2197-1838
地板
發(fā)表于 2025-3-22 05:02:17 | 只看該作者
Steven Krantz,Harold ParksSelf-contained, inclusive, and accessible for both the graduate students and researchers.Motivates the key ideas with examples and figures.Includes considerable background material and complete proofs
5#
發(fā)表于 2025-3-22 10:09:51 | 只看該作者
6#
發(fā)表于 2025-3-22 13:37:15 | 只看該作者
7#
發(fā)表于 2025-3-22 19:04:38 | 只看該作者
8#
發(fā)表于 2025-3-22 22:07:43 | 只看該作者
Invariant Measures and the Construction of Haar Measure.,
9#
發(fā)表于 2025-3-23 04:17:33 | 只看該作者
Covering Theorems and the Differentiation of Integrals,
10#
發(fā)表于 2025-3-23 08:51:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奉节县| 泰兴市| 屯门区| 甘孜县| 怀集县| 佛教| 喀喇| 通山县| 安丘市| 突泉县| 临清市| 六枝特区| 普定县| 盐山县| 安徽省| 祁门县| 孝义市| 宽甸| 秭归县| 蒙城县| 伊吾县| 靖江市| 共和县| 伊金霍洛旗| 托克托县| 襄樊市| 柳州市| 伊春市| 衡山县| 静宁县| 铁岭县| 广宁县| 翁源县| 西和县| 本溪| 桃江县| 汶川县| 白河县| 抚宁县| 康平县| 桃园县|