找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Inequalities; Yuri? Dmitrievich Burago,Viktor Abramovich Zalgall Book 1988 Springer-Verlag Berlin Heidelberg 1988 Mean curvature

[復制鏈接]
樓主: breath-focus
11#
發(fā)表于 2025-3-23 10:18:47 | 只看該作者
J?rg Schüttrumpf,Matthias Germert], [Eis], [Ras], [BiC], [KoN], [Sp], [Wo], [GKM], [dCar], [GLP], [K 1]. Our notations are closer to [GKM]. The variational theory of geodesics is used in an essential way. Its exposition may be found in the books [Mil 2], [Pos]. Comparison theorems are developed in part in [GKM], [K 1], [ChE], [BiC
12#
發(fā)表于 2025-3-23 16:43:47 | 只看該作者
Anti-atherosclerotic activity1,The area F and the length L of any plane domain with rectifiable boundary satisfy the inequality . the equality sign holds only in the case of a circle.
13#
發(fā)表于 2025-3-23 18:07:31 | 只看該作者
Pharmacological Models in Dermatology,To every pair of non-empty sets ., . ? ?. their (vector) Minkowski . is defined by . + . = {. + .: . ∈ ., . ∈ .}. If ., . are compact sets (i.e. bounded closed sets), then . is compact. In this case each of the sets ., ., . necessarily has a volume (its Lebesgue measure). Denote these volumes by .(.), .(.), .(.).
14#
發(fā)表于 2025-3-23 23:09:21 | 只看該作者
15#
發(fā)表于 2025-3-24 02:24:40 | 只看該作者
16#
發(fā)表于 2025-3-24 07:29:07 | 只看該作者
The Brunn-Minkowski Inequality and the Classical Isoperimetric Inequality,To every pair of non-empty sets ., . ? ?. their (vector) Minkowski . is defined by . + . = {. + .: . ∈ ., . ∈ .}. If ., . are compact sets (i.e. bounded closed sets), then . is compact. In this case each of the sets ., ., . necessarily has a volume (its Lebesgue measure). Denote these volumes by .(.), .(.), .(.).
17#
發(fā)表于 2025-3-24 12:59:44 | 只看該作者
Mixed Volumes,As before, . denotes the vector sum (Minkowski sum) of the subsets . and . of Euclidean space ?., while . = {.: . ∈ .} is the result of the homothety of . with coefficient .. In this chapter (except for Addendum 2), we consider only non-empty convex compact subsets of the space ?., often without saying it explicitly.
18#
發(fā)表于 2025-3-24 17:54:10 | 只看該作者
19#
發(fā)表于 2025-3-24 22:03:17 | 只看該作者
,Immersions in ?n,curvatures of (., .) with respect to the normal .., i.e. the eigenvalues of .(..). The vector.(the sum being taken over . from 1 to n ? m) does not depend on the choice of orthonormed basis {..} in .. This vector . is said to be the . of the .-dimensional surface (., .) at the point . ∈ . and its norm.is the ..
20#
發(fā)表于 2025-3-25 01:20:03 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 03:00
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
库尔勒市| 固阳县| 丹江口市| 天台县| 确山县| 麻栗坡县| 巩义市| 日土县| 浦城县| 绍兴县| 巨野县| 喀喇沁旗| 新巴尔虎左旗| 从江县| 茶陵县| 古浪县| 连平县| 广西| 三亚市| 伽师县| 江津市| 乌审旗| 双鸭山市| 陵水| 金华市| 海林市| 霞浦县| 永安市| 宜春市| 南召县| 贵州省| 朝阳区| 确山县| 南昌市| 平阴县| 海安县| 方山县| 通渭县| 江门市| 长葛市| 东丽区|