找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Inequalities; Yuri? Dmitrievich Burago,Viktor Abramovich Zalgall Book 1988 Springer-Verlag Berlin Heidelberg 1988 Mean curvature

[復(fù)制鏈接]
樓主: breath-focus
11#
發(fā)表于 2025-3-23 10:18:47 | 只看該作者
J?rg Schüttrumpf,Matthias Germert], [Eis], [Ras], [BiC], [KoN], [Sp], [Wo], [GKM], [dCar], [GLP], [K 1]. Our notations are closer to [GKM]. The variational theory of geodesics is used in an essential way. Its exposition may be found in the books [Mil 2], [Pos]. Comparison theorems are developed in part in [GKM], [K 1], [ChE], [BiC
12#
發(fā)表于 2025-3-23 16:43:47 | 只看該作者
Anti-atherosclerotic activity1,The area F and the length L of any plane domain with rectifiable boundary satisfy the inequality . the equality sign holds only in the case of a circle.
13#
發(fā)表于 2025-3-23 18:07:31 | 只看該作者
Pharmacological Models in Dermatology,To every pair of non-empty sets ., . ? ?. their (vector) Minkowski . is defined by . + . = {. + .: . ∈ ., . ∈ .}. If ., . are compact sets (i.e. bounded closed sets), then . is compact. In this case each of the sets ., ., . necessarily has a volume (its Lebesgue measure). Denote these volumes by .(.), .(.), .(.).
14#
發(fā)表于 2025-3-23 23:09:21 | 只看該作者
15#
發(fā)表于 2025-3-24 02:24:40 | 只看該作者
16#
發(fā)表于 2025-3-24 07:29:07 | 只看該作者
The Brunn-Minkowski Inequality and the Classical Isoperimetric Inequality,To every pair of non-empty sets ., . ? ?. their (vector) Minkowski . is defined by . + . = {. + .: . ∈ ., . ∈ .}. If ., . are compact sets (i.e. bounded closed sets), then . is compact. In this case each of the sets ., ., . necessarily has a volume (its Lebesgue measure). Denote these volumes by .(.), .(.), .(.).
17#
發(fā)表于 2025-3-24 12:59:44 | 只看該作者
Mixed Volumes,As before, . denotes the vector sum (Minkowski sum) of the subsets . and . of Euclidean space ?., while . = {.: . ∈ .} is the result of the homothety of . with coefficient .. In this chapter (except for Addendum 2), we consider only non-empty convex compact subsets of the space ?., often without saying it explicitly.
18#
發(fā)表于 2025-3-24 17:54:10 | 只看該作者
19#
發(fā)表于 2025-3-24 22:03:17 | 只看該作者
,Immersions in ?n,curvatures of (., .) with respect to the normal .., i.e. the eigenvalues of .(..). The vector.(the sum being taken over . from 1 to n ? m) does not depend on the choice of orthonormed basis {..} in .. This vector . is said to be the . of the .-dimensional surface (., .) at the point . ∈ . and its norm.is the ..
20#
發(fā)表于 2025-3-25 01:20:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 00:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仙居县| 江阴市| 通海县| 垦利县| 崇礼县| 和硕县| 南澳县| 基隆市| 永年县| 繁昌县| 分宜县| 柘城县| 永安市| 常德市| 金山区| 霍州市| 馆陶县| 黑山县| 潼关县| 扎囊县| 壶关县| 宁城县| 赣州市| 麻栗坡县| 湾仔区| 中卫市| 荆州市| 翁牛特旗| 钟祥市| 禹城市| 县级市| 上蔡县| 且末县| 西吉县| 视频| 江川县| 恩平市| 鞍山市| 盐亭县| 龙山县| 五指山市|