找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Harmonic Analysis I; A Sharp Divergence T Dorina Mitrea,Irina Mitrea,Marius Mitrea Book 2022 The Editor(s) (if applicable) and Th

[復(fù)制鏈接]
查看: 14275|回復(fù): 43
樓主
發(fā)表于 2025-3-21 17:00:59 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Harmonic Analysis I
副標(biāo)題A Sharp Divergence T
編輯Dorina Mitrea,Irina Mitrea,Marius Mitrea
視頻videohttp://file.papertrans.cn/384/383518/383518.mp4
概述Includes chapter-level summaries.Features novel principal results in monograph format.Contains applications to complex analysis, scattering, and PDEs
叢書名稱Developments in Mathematics
圖書封面Titlebook: Geometric Harmonic Analysis I; A Sharp Divergence T Dorina Mitrea,Irina Mitrea,Marius Mitrea Book 2022 The Editor(s) (if applicable) and Th
描述This monograph presents a comprehensive, self-contained, and novel approach to the Divergence Theorem through five progressive volumes. Its ultimate aim is to develop tools in Real and Harmonic Analysis, of geometric measure theoretic flavor, capable of treating a broad spectrum of boundary value problems formulated in rather general geometric and analytic settings. The text is intended for researchers, graduate students, and industry professionals interested in applications of harmonic analysis and geometric measure theory to complex analysis, scattering, and partial differential equations..Volume I establishes a sharp version of the Divergence Theorem (aka Fundamental Theorem of Calculus) which allows for an inclusive class of vector fields whose boundary trace is only assumed to exist in a nontangential pointwise sense..
出版日期Book 2022
關(guān)鍵詞Divergence theorem; Gauss-Green theorem; Stokes theorem; nontangential maximal function; nontangentially
版次1
doihttps://doi.org/10.1007/978-3-031-05950-6
isbn_softcover978-3-031-05952-0
isbn_ebook978-3-031-05950-6Series ISSN 1389-2177 Series E-ISSN 2197-795X
issn_series 1389-2177
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Geometric Harmonic Analysis I影響因子(影響力)




書目名稱Geometric Harmonic Analysis I影響因子(影響力)學(xué)科排名




書目名稱Geometric Harmonic Analysis I網(wǎng)絡(luò)公開度




書目名稱Geometric Harmonic Analysis I網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Harmonic Analysis I被引頻次




書目名稱Geometric Harmonic Analysis I被引頻次學(xué)科排名




書目名稱Geometric Harmonic Analysis I年度引用




書目名稱Geometric Harmonic Analysis I年度引用學(xué)科排名




書目名稱Geometric Harmonic Analysis I讀者反饋




書目名稱Geometric Harmonic Analysis I讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:53:38 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:47:25 | 只看該作者
Tools from Harmonic Analysis,ular integral operators on uniformly rectifiable sets. The discussion in Sect.?. pertains to subaveraging functions, reverse H?lder estimates, and interior estimates. Finally, in Sect.?. we introduce and study the solid maximal function introduced and maximal Lebesgue spaces.
地板
發(fā)表于 2025-3-22 06:42:18 | 只看該作者
5#
發(fā)表于 2025-3-22 11:39:52 | 只看該作者
Book 2022olume I establishes a sharp version of the Divergence Theorem (aka Fundamental Theorem of Calculus) which allows for an inclusive class of vector fields whose boundary trace is only assumed to exist in a nontangential pointwise sense..
6#
發(fā)表于 2025-3-22 13:03:13 | 只看該作者
7#
發(fā)表于 2025-3-22 17:49:48 | 只看該作者
8#
發(fā)表于 2025-3-22 22:26:09 | 只看該作者
1389-2177 and PDEsThis monograph presents a comprehensive, self-contained, and novel approach to the Divergence Theorem through five progressive volumes. Its ultimate aim is to develop tools in Real and Harmonic Analysis, of geometric measure theoretic flavor, capable of treating a broad spectrum of boundary
9#
發(fā)表于 2025-3-23 04:31:21 | 只看該作者
10#
發(fā)表于 2025-3-23 06:33:28 | 只看該作者
Druckluftwerkzeuge für die Fertigung) points of view. In particular, in stark contrast with the classical De Giorgi–Federer Divergence Theorem, our simplest version of the Divergence Theorem already contains the sharp version of the Fundamental Theorem of Calculus, to which it precisely reduces in the one-dimensional setting.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 20:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鱼台县| 靖西县| 长宁县| 榕江县| 商丘市| 佛学| 桃园县| 钟祥市| 永德县| 石景山区| 上高县| 富民县| 维西| 长海县| 阜阳市| 尉氏县| 富宁县| 长宁县| 凤台县| 浦北县| 汝阳县| 江津市| 平原县| 历史| 海原县| 遵化市| 湾仔区| 望江县| 张掖市| 漳浦县| 响水县| 藁城市| 普定县| 桐乡市| 肥西县| 资阳市| 盐城市| 龙陵县| 凭祥市| 钦州市| 巍山|