找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Function Theory in Higher Dimension; Filippo Bracci Book 2017 Springer International Publishing AG, part of Springer Nature 2017

[復(fù)制鏈接]
樓主: ARGOT
31#
發(fā)表于 2025-3-26 21:15:40 | 只看該作者
32#
發(fā)表于 2025-3-27 04:02:00 | 只看該作者
https://doi.org/10.1007/978-94-009-7261-2In this paper we show the equivalence among three conjectures (and related open questions), namely, the embedding of univalent maps of the unit ball into Loewner chains, the approximation of univalent maps with entire univalent maps and the immersion of domain biholomorphic to the ball in a Runge way into Fatou-Bieberbach domains.
33#
發(fā)表于 2025-3-27 06:48:28 | 只看該作者
34#
發(fā)表于 2025-3-27 12:17:05 | 只看該作者
Decades of Improvement: The Interwar Years,We give an example of a domain . in ., biholomorphic to a ball, such that . is not Runge in any Stein neighborhood of ..
35#
發(fā)表于 2025-3-27 15:55:10 | 只看該作者
36#
發(fā)表于 2025-3-27 21:16:05 | 只看該作者
The Embedding Conjecture and the Approximation Conjecture in Higher Dimension,In this paper we show the equivalence among three conjectures (and related open questions), namely, the embedding of univalent maps of the unit ball into Loewner chains, the approximation of univalent maps with entire univalent maps and the immersion of domain biholomorphic to the ball in a Runge way into Fatou-Bieberbach domains.
37#
發(fā)表于 2025-3-27 22:30:42 | 只看該作者
Jordan Structures in Bounded Symmetric Domains,We discuss how Jordan algebraic structures arise from the geometry of bounded symmetric domains and their useful role in the study of holomorphic functions on these domains.
38#
發(fā)表于 2025-3-28 03:00:48 | 只看該作者
On Runge Neighborhoods of Closures of Domains Biholomorphic to a Ball,We give an example of a domain . in ., biholomorphic to a ball, such that . is not Runge in any Stein neighborhood of ..
39#
發(fā)表于 2025-3-28 08:43:50 | 只看該作者
,Metric Properties of Domains in ?,,This article is the written form of a presentation given during the Workshop “Geometric Function Theory in higher dimension”. We present some developments in the classical field of classification of domains in . and some related questions.
40#
發(fā)表于 2025-3-28 14:00:37 | 只看該作者
978-3-030-10319-4Springer International Publishing AG, part of Springer Nature 2017
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清水河县| 大兴区| 富裕县| 黔东| 屏东市| 九龙县| 旬邑县| 长兴县| 陆河县| 平遥县| 莱阳市| 邻水| 图木舒克市| 弋阳县| 长寿区| 特克斯县| 龙江县| 慈溪市| 姜堰市| 平阴县| 阿尔山市| 安溪县| 介休市| 江城| 攀枝花市| 昭觉县| 景德镇市| 庆安县| 汪清县| 专栏| 易门县| 大理市| 荆门市| 镇宁| 六安市| 贺兰县| 金溪县| 杂多县| 沁阳市| 和田县| 农安县|