找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Flows on Planar Lattices; Andrea Braides,Margherita Solci Book 2021 The Editor(s) (if applicable) and The Author(s), under exclu

[復(fù)制鏈接]
查看: 52982|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:05:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Flows on Planar Lattices
編輯Andrea Braides,Margherita Solci
視頻videohttp://file.papertrans.cn/384/383510/383510.mp4
概述Introduces important concepts in modern Applied Analysis through prototypical problems, discussed in a natural way.Advanced research topics are introduced in a stimulating and constructive fashion.Cop
叢書名稱Pathways in Mathematics
圖書封面Titlebook: Geometric Flows on Planar Lattices;  Andrea Braides,Margherita Solci Book 2021 The Editor(s) (if applicable) and The Author(s), under exclu
描述This book introduces the reader to important concepts in modern applied analysis, such as homogenization, gradient flows on metric spaces, geometric evolution, Gamma-convergence tools, applications of geometric measure theory, properties of interfacial energies, etc. This is done by tackling a prototypical problem of interfacial evolution in heterogeneous media, where these concepts are introduced and elaborated in a natural and constructive way. At the same time, the analysis introduces open issues of a general and fundamental nature, at the core of important applications. The focus on two-dimensional lattices as a prototype of heterogeneous media allows visual descriptions of concepts and methods through a large amount of illustrations.. . .
出版日期Book 2021
關(guān)鍵詞Variational evolution; Gradient flows; Homogenization; Heterogeneous media; Geometric motions; Motion by
版次1
doihttps://doi.org/10.1007/978-3-030-69917-8
isbn_softcover978-3-030-69919-2
isbn_ebook978-3-030-69917-8Series ISSN 2367-3451 Series E-ISSN 2367-346X
issn_series 2367-3451
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Geometric Flows on Planar Lattices影響因子(影響力)




書目名稱Geometric Flows on Planar Lattices影響因子(影響力)學(xué)科排名




書目名稱Geometric Flows on Planar Lattices網(wǎng)絡(luò)公開度




書目名稱Geometric Flows on Planar Lattices網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Flows on Planar Lattices被引頻次




書目名稱Geometric Flows on Planar Lattices被引頻次學(xué)科排名




書目名稱Geometric Flows on Planar Lattices年度引用




書目名稱Geometric Flows on Planar Lattices年度引用學(xué)科排名




書目名稱Geometric Flows on Planar Lattices讀者反饋




書目名稱Geometric Flows on Planar Lattices讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:44:09 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:40:32 | 只看該作者
地板
發(fā)表于 2025-3-22 05:09:14 | 只看該作者
Evolution of Planar Lattices,udied in the previous chapter. As shown in Theorem . (and also Theorem .) the discrete-to-continuum Γ-limits of such energies are crystalline perimeters. In Sect. 4.1 we first describe motion by square crystalline curvature, which is obtained as a minimizing movement for the square perimeter (.) usi
5#
發(fā)表于 2025-3-22 10:29:12 | 只看該作者
6#
發(fā)表于 2025-3-22 14:12:59 | 只看該作者
Book 2021volution, Gamma-convergence tools, applications of geometric measure theory, properties of interfacial energies, etc. This is done by tackling a prototypical problem of interfacial evolution in heterogeneous media, where these concepts are introduced and elaborated in a natural and constructive way.
7#
發(fā)表于 2025-3-22 17:16:16 | 只看該作者
8#
發(fā)表于 2025-3-22 22:42:53 | 只看該作者
https://doi.org/10.1007/978-3-642-50271-2apter is devoted to the study of the Γ-limit of energies defined on lattices at a space scaling which gives a surface energy in the limit. The corresponding minimizing movement for . will provide a reference geometric motion (motion by crystalline curvature), which will be defined and analyzed in the next chapter.
9#
發(fā)表于 2025-3-23 02:51:04 | 只看該作者
10#
發(fā)表于 2025-3-23 07:33:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 16:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
城口县| 六安市| 梁河县| 秭归县| 平和县| 广西| 洞头县| 盖州市| 南安市| 同德县| 龙岩市| 南澳县| 广饶县| 边坝县| 九寨沟县| 策勒县| 仙居县| 阿拉善盟| 本溪市| 寻乌县| 岫岩| 科尔| 兴国县| 达拉特旗| 阿克苏市| 米泉市| 凤凰县| 天门市| 枣强县| 仁怀市| 吉安县| 巴青县| 桐乡市| 衡南县| 中江县| 卢湾区| 禹城市| 石阡县| 贡觉县| 镇安县| 丹阳市|