找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Flows and the Geometry of Space-time; Vicente Cortés,Klaus Kr?ncke,Jan Louis Book 2018 Springer Nature Switzerland AG 2018 geome

[復(fù)制鏈接]
查看: 45089|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:49:12 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometric Flows and the Geometry of Space-time
編輯Vicente Cortés,Klaus Kr?ncke,Jan Louis
視頻videohttp://file.papertrans.cn/384/383509/383509.mp4
概述Provides and excellent introduction to important themes of current research in differential geometry and theoretical physics.Basis of all contributions are lectures given at a Summer School in Hambrug
叢書名稱Tutorials, Schools, and Workshops in the Mathematical Sciences
圖書封面Titlebook: Geometric Flows and the Geometry of Space-time;  Vicente Cortés,Klaus Kr?ncke,Jan Louis Book 2018 Springer Nature Switzerland AG 2018 geome
描述.This book consists of two lecture notes on geometric flow equations (O. Schnürer) and Lorentzian geometry? - holonomy, spinors and Cauchy Problems (H. Baum and T. Leistner) written by leading experts in these fields..?It grew out of the summer school “Geometric flows and the geometry of space-time” held in ?Hamburg (2016) and provides an excellent introduction for students of mathematics and theoretical physics to important themes of current research in global analysis, differential geometry and mathematical physics.
出版日期Book 2018
關(guān)鍵詞geometric flows; Lorentzian geometry; evolution equations; mean curvature flow; holonomy; parallel spinor
版次1
doihttps://doi.org/10.1007/978-3-030-01126-0
isbn_ebook978-3-030-01126-0Series ISSN 2522-0969 Series E-ISSN 2522-0977
issn_series 2522-0969
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Geometric Flows and the Geometry of Space-time影響因子(影響力)




書目名稱Geometric Flows and the Geometry of Space-time影響因子(影響力)學(xué)科排名




書目名稱Geometric Flows and the Geometry of Space-time網(wǎng)絡(luò)公開度




書目名稱Geometric Flows and the Geometry of Space-time網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Flows and the Geometry of Space-time被引頻次




書目名稱Geometric Flows and the Geometry of Space-time被引頻次學(xué)科排名




書目名稱Geometric Flows and the Geometry of Space-time年度引用




書目名稱Geometric Flows and the Geometry of Space-time年度引用學(xué)科排名




書目名稱Geometric Flows and the Geometry of Space-time讀者反饋




書目名稱Geometric Flows and the Geometry of Space-time讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:46:15 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:09:51 | 只看該作者
Book 2018. Baum and T. Leistner) written by leading experts in these fields..?It grew out of the summer school “Geometric flows and the geometry of space-time” held in ?Hamburg (2016) and provides an excellent introduction for students of mathematics and theoretical physics to important themes of current res
地板
發(fā)表于 2025-3-22 06:04:28 | 只看該作者
https://doi.org/10.1007/978-94-015-2808-5htlike vector field or a parallel lightlike spinor field with initial conditions on a spacelike hypersurface. Thereby, we derive a second order evolution equation of Cauchy-Kowalevski type that can be solved in the analytic setting as well as an appropriate first order quasilinear hyperbolic system that yields a solution in the smooth case.
5#
發(fā)表于 2025-3-22 12:43:17 | 只看該作者
Lorentzian Geometry: Holonomy, Spinors, and Cauchy Problems,htlike vector field or a parallel lightlike spinor field with initial conditions on a spacelike hypersurface. Thereby, we derive a second order evolution equation of Cauchy-Kowalevski type that can be solved in the analytic setting as well as an appropriate first order quasilinear hyperbolic system that yields a solution in the smooth case.
6#
發(fā)表于 2025-3-22 13:40:06 | 只看該作者
7#
發(fā)表于 2025-3-22 17:25:28 | 只看該作者
Book 2018 held in ?Hamburg (2016) and provides an excellent introduction for students of mathematics and theoretical physics to important themes of current research in global analysis, differential geometry and mathematical physics.
8#
發(fā)表于 2025-3-23 00:27:16 | 只看該作者
9#
發(fā)表于 2025-3-23 01:35:42 | 只看該作者
10#
發(fā)表于 2025-3-23 06:27:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泽州县| 厦门市| 黄大仙区| 理塘县| 曲沃县| 湟源县| 佛冈县| 枝江市| 丰镇市| 泗阳县| 景东| 瓦房店市| 大理市| 鸡西市| 五指山市| 辛集市| 隆回县| 南投市| 牡丹江市| 柞水县| 江城| 斗六市| 宝坻区| 察雅县| 府谷县| 通州区| 科尔| 大荔县| 澄迈县| 贡觉县| 潞西市| 邵东县| 岳阳市| 乌兰浩特市| 闽侯县| 遂川县| 吴桥县| 内江市| 永嘉县| 平谷区| 锦州市|