找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Dynamics; Proceedings of the I J. Palis Conference proceedings 1983 Springer-Verlag Berlin Heidelberg 1983 Dynamics.Dynamisches S

[復制鏈接]
樓主: Waterproof
11#
發(fā)表于 2025-3-23 10:34:18 | 只看該作者
On surfaces of constant mean curvature in a three-dimensional space of constant curvature,
12#
發(fā)表于 2025-3-23 17:27:14 | 只看該作者
13#
發(fā)表于 2025-3-23 19:01:42 | 只看該作者
An index theory for periodic solutions of a Hamiltonian system,
14#
發(fā)表于 2025-3-23 23:36:53 | 只看該作者
Foliations that are not approximable by smoother ones,
15#
發(fā)表于 2025-3-24 05:08:40 | 只看該作者
16#
發(fā)表于 2025-3-24 06:44:26 | 只看該作者
Currents on a circle invariant by a fuchsian group,
17#
發(fā)表于 2025-3-24 11:53:13 | 只看該作者
An approximation theorem for immersions with stable configurations of lines of principal curvature,ficiently small perturbations of β. Actually, the elements β are found in the class .., r≥4, of C.-principally structurally stable immersions, introduced in [3]..Examples of immersions with recurrent lines of principal curvature are also given.
18#
發(fā)表于 2025-3-24 17:35:29 | 只看該作者
https://doi.org/10.1007/978-1-349-17121-7ficiently small perturbations of β. Actually, the elements β are found in the class .., r≥4, of C.-principally structurally stable immersions, introduced in [3]..Examples of immersions with recurrent lines of principal curvature are also given.
19#
發(fā)表于 2025-3-24 21:31:01 | 只看該作者
An approximation theorem for immersions with stable configurations of lines of principal curvature,s β whose principal configurations P. = (U. ,F. ,f.) defined by umbilical points and families of lines of principal curvature, are stable under C.-sufficiently small perturbations of β. Actually, the elements β are found in the class .., r≥4, of C.-principally structurally stable immersions, introdu
20#
發(fā)表于 2025-3-25 02:14:54 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 22:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
高唐县| 临清市| 西乌珠穆沁旗| 宁河县| 洛川县| 井陉县| 鲁山县| 呼伦贝尔市| 微博| 孝义市| 五家渠市| 宝清县| 建水县| 历史| 余庆县| 九江市| 土默特右旗| 临城县| 阳新县| 富裕县| 乐业县| 大渡口区| 郴州市| 海安县| 安岳县| 乡城县| 淳安县| 渝北区| 章丘市| 双流县| 苍溪县| 新化县| 山阳县| 壤塘县| 聊城市| 庆安县| 外汇| 商都县| 贵州省| 凤冈县| 阿荣旗|