找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Control Theory and Sub-Riemannian Geometry; Gianna Stefani,Ugo Boscain,Mario Sigalotti Book 2014 Springer International Publishi

[復(fù)制鏈接]
樓主: Nixon
51#
發(fā)表于 2025-3-30 11:10:26 | 只看該作者
52#
發(fā)表于 2025-3-30 13:08:33 | 只看該作者
53#
發(fā)表于 2025-3-30 20:33:08 | 只看該作者
On geometry of affine control systems with one input,ributions of maximal class in ?. with additional structures such as affine control systems with one input spanning these distributions, sub-(pseudo)Riemannian structures etc. In contrast to the case of an arbitrary rank 2 distribution without additional structures, in the considered cases each abnor
54#
發(fā)表于 2025-3-31 00:47:37 | 只看該作者
55#
發(fā)表于 2025-3-31 04:32:49 | 只看該作者
The Delauney-Dubins Problem,iven constant curvature that connect two given tangential directions. About a hundred years later, L. Dubins, apparently unaware of the former problem, asked for a curve of minimal length that joins two fixed directions in the space of curves whose curvature is less or equal than a given constant. D
56#
發(fā)表于 2025-3-31 07:23:22 | 只看該作者
57#
發(fā)表于 2025-3-31 10:36:51 | 只看該作者
On the Alexandrov Topology of sub-Lorentzian Manifolds,an analogue of the Riemannian distance function and the Alexandrov topology based on causal relations, are not equivalent in general and may possess a variety of relations. We also show that ‘opened causal relations’ are more well-behaved in sub-Lorentzian settings.
58#
發(fā)表于 2025-3-31 17:03:37 | 只看該作者
59#
發(fā)表于 2025-3-31 20:55:08 | 只看該作者
Geometric Control Theory and Sub-Riemannian Geometry
60#
發(fā)表于 2025-4-1 00:30:46 | 只看該作者
The Delauney-Dubins Problem,sion of the problem of Dubins..In this paper we will show that the . -dimensional problem of Dubins (called Delauney-Dubins, for historical reasons) is essentially three dimensional on any space form (simply connected space of constant curvature). We also show that the extremal equations are complet
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巢湖市| 广安市| 上饶县| 邢台市| 沈丘县| 潼南县| 博爱县| 蕲春县| 竹北市| 梧州市| 青龙| 宜都市| 班玛县| 江阴市| 毕节市| 临西县| 穆棱市| 盖州市| 临清市| 天柱县| 墨脱县| 澎湖县| 蛟河市| 玉环县| 淮滨县| 安乡县| 鹤壁市| 界首市| 大丰市| 安泽县| 涿鹿县| 类乌齐县| 汕尾市| 怀宁县| 冀州市| 伊宁县| 汉寿县| 平泉县| 吉首市| 城步| 文登市|