找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Control Theory and Sub-Riemannian Geometry; Gianna Stefani,Ugo Boscain,Mario Sigalotti Book 2014 Springer International Publishi

[復(fù)制鏈接]
樓主: Nixon
51#
發(fā)表于 2025-3-30 11:10:26 | 只看該作者
52#
發(fā)表于 2025-3-30 13:08:33 | 只看該作者
53#
發(fā)表于 2025-3-30 20:33:08 | 只看該作者
On geometry of affine control systems with one input,ributions of maximal class in ?. with additional structures such as affine control systems with one input spanning these distributions, sub-(pseudo)Riemannian structures etc. In contrast to the case of an arbitrary rank 2 distribution without additional structures, in the considered cases each abnor
54#
發(fā)表于 2025-3-31 00:47:37 | 只看該作者
55#
發(fā)表于 2025-3-31 04:32:49 | 只看該作者
The Delauney-Dubins Problem,iven constant curvature that connect two given tangential directions. About a hundred years later, L. Dubins, apparently unaware of the former problem, asked for a curve of minimal length that joins two fixed directions in the space of curves whose curvature is less or equal than a given constant. D
56#
發(fā)表于 2025-3-31 07:23:22 | 只看該作者
57#
發(fā)表于 2025-3-31 10:36:51 | 只看該作者
On the Alexandrov Topology of sub-Lorentzian Manifolds,an analogue of the Riemannian distance function and the Alexandrov topology based on causal relations, are not equivalent in general and may possess a variety of relations. We also show that ‘opened causal relations’ are more well-behaved in sub-Lorentzian settings.
58#
發(fā)表于 2025-3-31 17:03:37 | 只看該作者
59#
發(fā)表于 2025-3-31 20:55:08 | 只看該作者
Geometric Control Theory and Sub-Riemannian Geometry
60#
發(fā)表于 2025-4-1 00:30:46 | 只看該作者
The Delauney-Dubins Problem,sion of the problem of Dubins..In this paper we will show that the . -dimensional problem of Dubins (called Delauney-Dubins, for historical reasons) is essentially three dimensional on any space form (simply connected space of constant curvature). We also show that the extremal equations are complet
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巩留县| 思茅市| 赣榆县| 乌苏市| 通河县| 开封市| 富蕴县| 常德市| 齐河县| 蕲春县| 浮山县| 公主岭市| 娄底市| 桂林市| 当雄县| 额济纳旗| 开鲁县| 隆德县| 永胜县| 邳州市| 庆元县| 神木县| 确山县| 永嘉县| 隆德县| 崇明县| 年辖:市辖区| 临夏市| 江门市| 射阳县| 武隆县| 凤城市| 宁南县| 将乐县| 石渠县| 昌乐县| 花莲市| 休宁县| 兴仁县| 疏附县| 阳信县|