找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Constraint Solving and Applications; Beat Brüderlin,Dieter Roller Book 1998 Springer-Verlag Berlin Heidelberg 1998 3D.3D graphic

[復制鏈接]
樓主: obesity
31#
發(fā)表于 2025-3-26 22:20:10 | 只看該作者
32#
發(fā)表于 2025-3-27 04:57:30 | 只看該作者
Development Aid and Ripeness in Context,We describe a new approach for geometric shape design which his centered around a 2D and 3D geometric constraint solver. This approach enables so-called non-history based modeling providing more flexibility to the designer. The modeler combines geometric and topological constraints, direct manipulation, sketching and Boolean set operations.
33#
發(fā)表于 2025-3-27 06:47:17 | 只看該作者
Results and hypotheses assessment,We have developed a formalism to simplify the expression of 3D constraints and their solving. Our formalism makes a strong distinction between metric and projective properties. We represent points, lines and planes in projective space by tensors and use Cayley’s algebra, with the . and . operators, to express projective properties.
34#
發(fā)表于 2025-3-27 10:56:19 | 只看該作者
https://doi.org/10.1007/978-1-349-05541-8Curves and surfaces designed in a computer graphics environment have many applications, including the design of cars, airplanes, shipbodies and modelling robots. These free-form objects are an essential part of powerful CAD-systems.
35#
發(fā)表于 2025-3-27 17:30:57 | 只看該作者
36#
發(fā)表于 2025-3-27 19:30:05 | 只看該作者
37#
發(fā)表于 2025-3-27 22:51:20 | 只看該作者
Desargues: A Constraint-based System for 3D Projective GeometryWe have developed a formalism to simplify the expression of 3D constraints and their solving. Our formalism makes a strong distinction between metric and projective properties. We represent points, lines and planes in projective space by tensors and use Cayley’s algebra, with the . and . operators, to express projective properties.
38#
發(fā)表于 2025-3-28 03:51:23 | 只看該作者
39#
發(fā)表于 2025-3-28 09:58:14 | 只看該作者
40#
發(fā)表于 2025-3-28 13:41:30 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
赞皇县| 长沙市| 辽阳县| 宣城市| 中方县| 扎赉特旗| 平乡县| 普格县| 东方市| 鄢陵县| 建阳市| 石景山区| 崇州市| 云和县| 隆昌县| 金山区| 甘泉县| 确山县| 军事| 卢氏县| 武鸣县| 涟源市| 湄潭县| 科技| 柳河县| 贵阳市| 徐州市| 博白县| 永靖县| 巴林左旗| 合作市| 延长县| 平果县| 广水市| 墨江| 游戏| 麟游县| 左权县| 获嘉县| 宝兴县| 阿尔山市|