找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Constraint Solving and Applications; Beat Brüderlin,Dieter Roller Book 1998 Springer-Verlag Berlin Heidelberg 1998 3D.3D graphic

[復制鏈接]
樓主: obesity
31#
發(fā)表于 2025-3-26 22:20:10 | 只看該作者
32#
發(fā)表于 2025-3-27 04:57:30 | 只看該作者
Development Aid and Ripeness in Context,We describe a new approach for geometric shape design which his centered around a 2D and 3D geometric constraint solver. This approach enables so-called non-history based modeling providing more flexibility to the designer. The modeler combines geometric and topological constraints, direct manipulation, sketching and Boolean set operations.
33#
發(fā)表于 2025-3-27 06:47:17 | 只看該作者
Results and hypotheses assessment,We have developed a formalism to simplify the expression of 3D constraints and their solving. Our formalism makes a strong distinction between metric and projective properties. We represent points, lines and planes in projective space by tensors and use Cayley’s algebra, with the . and . operators, to express projective properties.
34#
發(fā)表于 2025-3-27 10:56:19 | 只看該作者
https://doi.org/10.1007/978-1-349-05541-8Curves and surfaces designed in a computer graphics environment have many applications, including the design of cars, airplanes, shipbodies and modelling robots. These free-form objects are an essential part of powerful CAD-systems.
35#
發(fā)表于 2025-3-27 17:30:57 | 只看該作者
36#
發(fā)表于 2025-3-27 19:30:05 | 只看該作者
37#
發(fā)表于 2025-3-27 22:51:20 | 只看該作者
Desargues: A Constraint-based System for 3D Projective GeometryWe have developed a formalism to simplify the expression of 3D constraints and their solving. Our formalism makes a strong distinction between metric and projective properties. We represent points, lines and planes in projective space by tensors and use Cayley’s algebra, with the . and . operators, to express projective properties.
38#
發(fā)表于 2025-3-28 03:51:23 | 只看該作者
39#
發(fā)表于 2025-3-28 09:58:14 | 只看該作者
40#
發(fā)表于 2025-3-28 13:41:30 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阿鲁科尔沁旗| 滦南县| 石台县| 景泰县| 彩票| 马鞍山市| 华池县| 昂仁县| 湟源县| 蒙山县| 九寨沟县| 宁远县| 许昌市| 大兴区| 开阳县| 自贡市| 齐河县| 渝北区| 四平市| 项城市| 永昌县| 咸宁市| 永平县| 璧山县| 博湖县| 迁西县| 平定县| 彩票| 马鞍山市| 杭锦后旗| 华蓥市| 都昌县| 吴川市| 张北县| 新建县| 永胜县| 志丹县| 怀远县| 开化县| 汉阴县| 牟定县|