找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Computing for Perception Action Systems; Concepts, Algorithms Eduardo Bayro Corrochano Book 2001 Springer Science+Business Media

[復(fù)制鏈接]
樓主: Cession
31#
發(fā)表于 2025-3-26 21:01:37 | 只看該作者
Geometric Algebra of Computer Visionwell-founded and elegant language for expressing and implementing those aspects of linear algebra and projective geometry that are useful for computer vision. Since geometric algebra offers both geometric insight and algebraic computational power, it is useful for tasks such as the computation of pr
32#
發(fā)表于 2025-3-27 01:26:28 | 只看該作者
33#
發(fā)表于 2025-3-27 06:00:26 | 只看該作者
34#
發(fā)表于 2025-3-27 11:24:00 | 只看該作者
Applications in Computer Vision projective invariants using .-uncalibrated cameras. First, we describe Pascal’s theorem as a type of projective invariant, and then the theorem is applied for computing camera-intrinsic parameters. The fundamental projective invariant cross-ratio is studied in one, two, and three dimensions, using
35#
發(fā)表于 2025-3-27 15:27:04 | 只看該作者
36#
發(fā)表于 2025-3-27 18:34:13 | 只看該作者
Geometric Neuralcomputing relationships between the physical signals of external objects and the internal signals of a biological creature by using extrinsic vectors to represent those signals coming from the world and intrinsic vectors to represent those signals originating in the internal world. We can also assume that ex
37#
發(fā)表于 2025-3-28 00:40:04 | 只看該作者
38#
發(fā)表于 2025-3-28 02:35:49 | 只看該作者
to bring unity and coherance to the problems of artificial intelligence. Accordingly, we are motivated by the challenge of applying geometric algebra to the development of PAC systems. Geometric algebra provides the general mathematical framework for the development of the ideas of multi-linear algebra, multi978-1-4612-6535-1978-1-4613-0177-6
39#
發(fā)表于 2025-3-28 08:52:14 | 只看該作者
40#
發(fā)表于 2025-3-28 11:04:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 20:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永康市| 庄河市| 贵溪市| 新和县| 留坝县| 赤城县| 饶平县| 绥芬河市| 兴安县| 临高县| 甘德县| 三穗县| 普安县| 广河县| 晋江市| 团风县| 安龙县| 卓尼县| 台江县| 五莲县| 友谊县| 周宁县| 平远县| 龙陵县| 洪湖市| 武山县| 台南县| 墨玉县| 崇州市| 南乐县| 都兰县| 靖江市| 台东县| 嘉定区| 红安县| 芦溪县| 青海省| 防城港市| 安康市| 桃园市| 芜湖市|