找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Complex Analysis; In Honor of Kang-Tae Jisoo Byun,Hong Rae Cho,Jong-Do Park Conference proceedings 2018 Springer Nature Singapore

[復(fù)制鏈接]
查看: 38803|回復(fù): 69
樓主
發(fā)表于 2025-3-21 17:44:27 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Geometric Complex Analysis
副標(biāo)題In Honor of Kang-Tae
編輯Jisoo Byun,Hong Rae Cho,Jong-Do Park
視頻videohttp://file.papertrans.cn/384/383482/383482.mp4
概述Presents recent developments in complex analysis and geometry.Contains contributions from world-renowned scholars in the field.Covers important topics in the area
叢書(shū)名稱Springer Proceedings in Mathematics & Statistics
圖書(shū)封面Titlebook: Geometric Complex Analysis; In Honor of Kang-Tae Jisoo Byun,Hong Rae Cho,Jong-Do Park Conference proceedings 2018 Springer Nature Singapore
描述The KSCV Symposium, the Korean Conference on Several Complex Variables, started in 1997 in an effort to promote the study of complex analysis and geometry. Since then, the conference met semi-regularly for about 10 years and then settled on being held biannually. The sixth and tenth conferences were held in 2002 and 2014 as satellite conferences to the Beijing International Congress of Mathematicians (ICM) and the Seoul ICM, respectively. The purpose of the KSCV Symposium is to organize the research talks of many leading scholars in the world, to provide an opportunity for communication, and to promote new researchers in this field.
出版日期Conference proceedings 2018
關(guān)鍵詞Complex Dynamics; L^2 extension; Holomorphic mappings; Variety of minimal rational tangents; Multiplier
版次1
doihttps://doi.org/10.1007/978-981-13-1672-2
isbn_softcover978-981-13-4663-7
isbn_ebook978-981-13-1672-2Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer Nature Singapore Pte Ltd. 2018
The information of publication is updating

書(shū)目名稱Geometric Complex Analysis影響因子(影響力)




書(shū)目名稱Geometric Complex Analysis影響因子(影響力)學(xué)科排名




書(shū)目名稱Geometric Complex Analysis網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Geometric Complex Analysis網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Geometric Complex Analysis被引頻次




書(shū)目名稱Geometric Complex Analysis被引頻次學(xué)科排名




書(shū)目名稱Geometric Complex Analysis年度引用




書(shū)目名稱Geometric Complex Analysis年度引用學(xué)科排名




書(shū)目名稱Geometric Complex Analysis讀者反饋




書(shū)目名稱Geometric Complex Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:53:53 | 只看該作者
Biographisch-narrative Untersuchung,rief survey of the geometric consequences and the known classes of manifolds with the density property, we focus on affine algebraic surfaces with the density property, in particular on so-called Gizatullin surfaces.
板凳
發(fā)表于 2025-3-22 02:27:07 | 只看該作者
地板
發(fā)表于 2025-3-22 04:52:36 | 只看該作者
Divertikulose und Divertikelkrankheiteorem, which is obtained from an observation for the variation of the numerical dimension of singular hermitian line bundles. The other is an analytic injectivity theorem for log canonical pairs on surfaces, which can be seen as a partial answer for Fujino’s conjecture.
5#
發(fā)表于 2025-3-22 10:17:08 | 只看該作者
CR-Geometry and Shearfree Lorentzian Geometry,al structure and a partially integrable almost CR-structure on the leaf space and we classify the Lorentzian metrics that induce the same subconformal structure. In the last section we survey some known applications of the correspondence between almost CR-structures and shearfree null-congurences in dimension 4.
6#
發(fā)表于 2025-3-22 14:51:19 | 只看該作者
7#
發(fā)表于 2025-3-22 20:21:03 | 只看該作者
8#
發(fā)表于 2025-3-23 00:57:14 | 只看該作者
9#
發(fā)表于 2025-3-23 02:14:21 | 只看該作者
10#
發(fā)表于 2025-3-23 08:59:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
静海县| 黎平县| 阿荣旗| 吴江市| 砀山县| 青河县| 邯郸市| 杨浦区| 隆回县| 三原县| 巴楚县| 蒙自县| 民权县| 金阳县| 合江县| 九江县| 乌拉特前旗| 郸城县| 荆州市| 漳平市| 多伦县| 翁源县| 古交市| 沙田区| 都江堰市| 无为县| 永平县| 乐亭县| 嘉禾县| 长兴县| 新津县| 光泽县| 彭山县| 天镇县| 克山县| 宝丰县| 芒康县| 新龙县| 百色市| 南岸区| 新龙县|