找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Harmonic Analysis; Paolo Ciatti,Alessio Martini Conference proceedings 2021 The Editor(s) (if applicable) and The Aut

[復(fù)制鏈接]
樓主: 召集會議
21#
發(fā)表于 2025-3-25 06:49:00 | 只看該作者
22#
發(fā)表于 2025-3-25 11:22:52 | 只看該作者
23#
發(fā)表于 2025-3-25 12:15:24 | 只看該作者
Geometric Aspects of Harmonic Analysis978-3-030-72058-2Series ISSN 2281-518X Series E-ISSN 2281-5198
24#
發(fā)表于 2025-3-25 17:12:32 | 只看該作者
25#
發(fā)表于 2025-3-25 22:35:41 | 只看該作者
26#
發(fā)表于 2025-3-26 03:40:55 | 只看該作者
Lagertechnik und Kommissionierung,=?., which are of the form .?=?.?+?.(.), where .(.) is a smooth function of finite type. Our results build on previous joint work in which we have studied the case .(.)?=?..∕3 by means of the bilinear method. As it turns out, the understanding of that special case becomes also crucial for the treatm
27#
發(fā)表于 2025-3-26 05:08:45 | 只看該作者
Lagertechnik und Kommissionierung,luding Heisenberg groups, the optimal constant in this inequality is equal to that for Euclidean space of the same topological dimension, yet no functions attain exact equality. We characterize ordered pairs of functions that nearly achieve equality for Heisenberg groups. The analysis relies on a ch
28#
發(fā)表于 2025-3-26 11:22:42 | 只看該作者
W. Buchholz,W. F. Richter,J. Schwaigeran oscillatory factor. Oscillating multipliers have been examined extensively in the Euclidean setting where sharp, endpoint .. estimates are well known. In the Lie group setting, corresponding .. bounds for oscillating spectral multipliers have been established by several authors but only in the op
29#
發(fā)表于 2025-3-26 16:07:02 | 只看該作者
https://doi.org/10.1007/978-3-319-57952-8functions of . when restricted to certain fractal subsets Γ of .. The proofs in their entirety appear in Eswarathasan and Pramanik (Restriction of Laplace–Beltrami eigenfunctions to random Cantor-type sets on manifolds, 2019). The sets Γ that we consider are random and of Cantor-type. For large Lebe
30#
發(fā)表于 2025-3-26 20:14:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
枣庄市| 遂川县| 祁东县| 北安市| 夏津县| 西乡县| 白山市| 邻水| 同仁县| 平谷区| 潮安县| 乌鲁木齐市| 龙口市| 老河口市| 夏邑县| 聂荣县| 宁强县| 潼南县| 高阳县| 通城县| 长葛市| 大庆市| 涿鹿县| 高清| 靖远县| 德昌县| 安丘市| 顺平县| 郧西县| 台安县| 崇义县| 道孚县| 汾阳市| 龙胜| 克东县| 桂平市| 静宁县| 廊坊市| 兖州市| 大英县| 永登县|