找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA Bo‘a(chǎn)z Klartag,Emanuel Milman Book 2020 Springer Nature Switzerland AG 2020 A

[復制鏈接]
樓主: vitamin-D
31#
發(fā)表于 2025-3-26 22:07:32 | 只看該作者
32#
發(fā)表于 2025-3-27 04:56:57 | 只看該作者
,Gromov’s Waist of Non-radial Gaussian Measures and Radial Non-Gaussian Measures,lanation of the Caffarelli theorem that we use to handle not necessarily radially symmetric Gaussian measures. In the other appendix, we provide a comparison of different variations of Gromov’s pancake method.
33#
發(fā)表于 2025-3-27 09:00:37 | 只看該作者
34#
發(fā)表于 2025-3-27 13:12:27 | 只看該作者
35#
發(fā)表于 2025-3-27 14:47:26 | 只看該作者
36#
發(fā)表于 2025-3-27 21:17:33 | 只看該作者
,Gromov’s Waist of Non-radial Gaussian Measures and Radial Non-Gaussian Measures,st of radially symmetric Gaussian measures. In particular, it turns out possible to extend Gromov’s original result to the case of not necessarily radially symmetric Gaussian measure. We also provide examples of measures having no .-neighborhood waist property, including a rather wide class of compa
37#
發(fā)表于 2025-3-28 00:23:56 | 只看該作者
38#
發(fā)表于 2025-3-28 03:08:39 | 只看該作者
,On the Poincaré Constant of Log-Concave Measures,e revisit E. Milman’s result (Invent Math 177:1–43, 2009) on the link between weak (Poincaré or concentration) inequalities and Cheeger’s inequality in the log-concave cases, in particular extending localization ideas and a result of Latala, as well as providing a simpler proof of the nice Poincaré
39#
發(fā)表于 2025-3-28 09:31:30 | 只看該作者
40#
發(fā)表于 2025-3-28 12:23:47 | 只看該作者
Information and Dimensionality of Anisotropic Random Geometric Graphs,om geometric graph in which vertices correspond to points generated randomly and independently from a non-isotropic .-dimensional Gaussian distribution, and two vertices are connected if the distance between them is smaller than some pre-specified threshold. We derive new notions of dimensionality w
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
河间市| 邹城市| 梨树县| 清新县| 扬中市| 新津县| 乌恰县| 东阳市| 宁波市| 南汇区| 鞍山市| 化隆| 沙河市| 宜兰市| 谢通门县| 普格县| 卫辉市| 抚松县| 沅江市| 兴国县| 策勒县| 康定县| 牙克石市| 沙田区| 威信县| 安溪县| 两当县| 宝丰县| 齐齐哈尔市| 德清县| 遂溪县| 北碚区| 浦北县| 大同市| 资中县| 赫章县| 融水| 沾益县| 吴堡县| 灵台县| 奇台县|