找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA Bo‘a(chǎn)z Klartag,Emanuel Milman Book 2014 Springer International Publishing Swi

[復(fù)制鏈接]
樓主: 寓言
11#
發(fā)表于 2025-3-23 12:43:30 | 只看該作者
Vitushkin-Type Theorems,It is shown that for a subset . that has the global Gabrielov property, a Vitushkin-type estimate holds. Concrete examples are given for sub-level sets of certain classes of functions.
12#
發(fā)表于 2025-3-23 13:58:43 | 只看該作者
Reflectionless Measures and the Mattila-Melnikov-Verdera Uniform Rectifiability Theorem,The aim of these notes is to provide a new proof of the Mattila-Melnikov-Verdera theorem on the uniform rectifiability of an Ahlfors-David regular measure whose associated Cauchy transform operator is bounded. They are based on lectures given by the second author in the analysis seminars at Kent State University and Tel-Aviv University.
13#
發(fā)表于 2025-3-23 19:03:10 | 只看該作者
Estimates for Measures of Sections of Convex Bodies,A . estimate in the hyperplane problem with arbitrary measures has recently been proved in [.]. In this note we present analogs of this result for sections of lower dimensions and in the complex case. We deduce these inequalities from stability in comparison problems for different generalizations of intersection bodies.
14#
發(fā)表于 2025-3-24 01:45:16 | 只看該作者
Modified Paouris Inequality,The Paouris inequality gives the large deviation estimate for Euclidean norms of log-concave vectors. We present a modified version of it and show how the new inequality may be applied to derive tail estimates of ..-norms and suprema of norms of coordinate projections of isotropic log-concave vectors.
15#
發(fā)表于 2025-3-24 04:56:41 | 只看該作者
16#
發(fā)表于 2025-3-24 10:35:36 | 只看該作者
978-3-319-09476-2Springer International Publishing Switzerland 2014
17#
發(fā)表于 2025-3-24 12:51:57 | 只看該作者
18#
發(fā)表于 2025-3-24 16:17:19 | 只看該作者
19#
發(fā)表于 2025-3-24 22:37:42 | 只看該作者
20#
發(fā)表于 2025-3-25 02:31:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
京山县| 奉新县| 正阳县| 东台市| 华坪县| 五寨县| 滨海县| 五峰| 太仆寺旗| 蓬莱市| 柘荣县| 宝清县| 闻喜县| 乐都县| 儋州市| 澄迈县| 科技| 五家渠市| 娱乐| 仙桃市| 渑池县| 唐山市| 宣汉县| 金门县| 开原市| 卓尼县| 济宁市| 如皋市| 吴旗县| 泰州市| 会昌县| 陕西省| 岱山县| 苍梧县| 吐鲁番市| 永吉县| 建昌县| 清流县| 措勤县| 凤阳县| 奉新县|