找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar 2006– Bo‘a(chǎn)z Klartag,Shahar Mendelson,Vitali D. Milman Book 2012 Springer-Verlag Be

[復(fù)制鏈接]
樓主: interminable
31#
發(fā)表于 2025-3-26 22:01:38 | 只看該作者
32#
發(fā)表于 2025-3-27 01:57:43 | 只看該作者
33#
發(fā)表于 2025-3-27 07:49:34 | 只看該作者
34#
發(fā)表于 2025-3-27 10:02:51 | 只看該作者
Chronic Temporomandibular Joint Dislocation,We survey some interplays between spectral estimates of H?rmander-type, degenerate Monge-Ampère equations and geometric inequalities related to log-concavity such as Brunn-Minkowski, Santaló or Busemann inequalities.
35#
發(fā)表于 2025-3-27 17:09:38 | 只看該作者
Disnarration and the Unmentioned in Fiction,We derive two-sided bounds for moments of linear combinations of coordinates of unconditional log-concave vectors. We also investigate how well moments of such combinations may be approximated by moments of Gaussian random variables.
36#
發(fā)表于 2025-3-27 18:34:27 | 只看該作者
https://doi.org/10.1007/978-3-030-42738-2For a permutationally invariant unconditional convex body . in . we define a finite sequence . of projections of the body . to the space spanned by first . vectors of the standard basis of .. We prove that the sequence of volumes . is log-concave.
37#
發(fā)表于 2025-3-28 01:52:12 | 只看該作者
38#
發(fā)表于 2025-3-28 02:23:19 | 只看該作者
39#
發(fā)表于 2025-3-28 08:51:39 | 只看該作者
40#
發(fā)表于 2025-3-28 13:50:08 | 只看該作者
,Moebius Schr?dinger,Consider the one-dimensional lattice Schr?dinger operator with potential given by the Moebius function. It is shown that the Lyapounov exponent is strictly positive for almost all energies, answering a question posed by P. Sarnak.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 05:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
裕民县| 天镇县| 洛浦县| 原阳县| 安远县| 鹤壁市| 临城县| 沙坪坝区| 浏阳市| 札达县| 广河县| 偏关县| 元谋县| 弥勒县| 巫溪县| 定日县| 新营市| 大丰市| 和龙市| 稻城县| 鄂州市| 普安县| 钦州市| 祁阳县| 高邑县| 收藏| 尚义县| 南和县| 连江县| 时尚| 龙口市| 方山县| 高雄市| 遂溪县| 宣化县| 镇平县| 九龙城区| 龙泉市| 澄迈县| 巴南区| 治多县|