找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar 2006– Bo‘a(chǎn)z Klartag,Shahar Mendelson,Vitali D. Milman Book 2012 Springer-Verlag Be

[復(fù)制鏈接]
樓主: interminable
31#
發(fā)表于 2025-3-26 22:01:38 | 只看該作者
32#
發(fā)表于 2025-3-27 01:57:43 | 只看該作者
33#
發(fā)表于 2025-3-27 07:49:34 | 只看該作者
34#
發(fā)表于 2025-3-27 10:02:51 | 只看該作者
Chronic Temporomandibular Joint Dislocation,We survey some interplays between spectral estimates of H?rmander-type, degenerate Monge-Ampère equations and geometric inequalities related to log-concavity such as Brunn-Minkowski, Santaló or Busemann inequalities.
35#
發(fā)表于 2025-3-27 17:09:38 | 只看該作者
Disnarration and the Unmentioned in Fiction,We derive two-sided bounds for moments of linear combinations of coordinates of unconditional log-concave vectors. We also investigate how well moments of such combinations may be approximated by moments of Gaussian random variables.
36#
發(fā)表于 2025-3-27 18:34:27 | 只看該作者
https://doi.org/10.1007/978-3-030-42738-2For a permutationally invariant unconditional convex body . in . we define a finite sequence . of projections of the body . to the space spanned by first . vectors of the standard basis of .. We prove that the sequence of volumes . is log-concave.
37#
發(fā)表于 2025-3-28 01:52:12 | 只看該作者
38#
發(fā)表于 2025-3-28 02:23:19 | 只看該作者
39#
發(fā)表于 2025-3-28 08:51:39 | 只看該作者
40#
發(fā)表于 2025-3-28 13:50:08 | 只看該作者
,Moebius Schr?dinger,Consider the one-dimensional lattice Schr?dinger operator with potential given by the Moebius function. It is shown that the Lyapounov exponent is strictly positive for almost all energies, answering a question posed by P. Sarnak.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 05:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郎溪县| 贵南县| 曲水县| 大化| 吉林市| 长宁县| 新宾| 且末县| 得荣县| 临沭县| 中方县| 兰西县| 同德县| 乾安县| 云南省| 万宁市| 青岛市| 天水市| 平果县| 晋州市| 密云县| 温宿县| 东港市| 赣榆县| 登封市| 庆阳市| 慈利县| 门源| 蕲春县| 商南县| 定结县| 安福县| 大兴区| 长岛县| 梁山县| 东乌珠穆沁旗| 长寿区| 桦川县| 云南省| 双峰县| 永城市|