找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Approximation Theory; Alexey R. Alimov,Igor’ G. Tsar’kov Book 2021 The Editor(s) (if applicable) and The Author(s), under exclus

[復(fù)制鏈接]
樓主: architect
21#
發(fā)表于 2025-3-25 05:32:27 | 只看該作者
22#
發(fā)表于 2025-3-25 08:32:58 | 只看該作者
23#
發(fā)表于 2025-3-25 15:15:49 | 只看該作者
The Jung Constant,The Jung constant appears in many problems in various fields of mathematics. In the present chapter, we will give examples of such problems and present the available exact values of the Jung constant for several classical spaces.
24#
發(fā)表于 2025-3-25 18:31:54 | 只看該作者
978-3-030-90953-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
25#
發(fā)表于 2025-3-25 23:20:11 | 只看該作者
26#
發(fā)表于 2025-3-26 00:20:51 | 只看該作者
27#
發(fā)表于 2025-3-26 05:28:33 | 只看該作者
https://doi.org/10.1007/978-981-19-4097-2owing fact important for applications: in corresponding spaces, a?nonconvex set cannot be a?Chebyshev set. As a?corollary, at some point either the existence or the uniqueness property is not satisfied. Results of this kind can be useful in solving extremal problems.
28#
發(fā)表于 2025-3-26 11:38:30 | 只看該作者
29#
發(fā)表于 2025-3-26 15:10:39 | 只看該作者
Ulrike Tikvah Kissmann,Joost‘van Loonr to show that a?Chebyshev set is convex, it suffices to prove its ‘solarity’ (in some sense or other) and then employ Theorem?. on the convexity of suns in smooth spaces (of course if the corresponding space is smooth).
30#
發(fā)表于 2025-3-26 18:43:50 | 只看該作者
https://doi.org/10.1007/978-1-4842-3267-5al-valued functions, approximation by Chebyshev subspaces was found to be closely related to various problems in interpolation, uniqueness, and the number of zeros in nontrivial polynomials (the generalized Haar property). For vector-valued functions, the relation between such properties turned out to be less simple.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
固原市| 鸡泽县| 瓦房店市| 临朐县| 云阳县| 松江区| 阿拉尔市| 柳林县| 休宁县| 布拖县| 永丰县| 横峰县| 南召县| 南京市| 九龙城区| 运城市| 陆丰市| 崇州市| 张家界市| 镇平县| 宝清县| 康保县| 通江县| 图们市| 定州市| 合江县| 香港 | 四川省| 新兴县| 牡丹江市| 元朗区| 潞城市| 聊城市| 潞西市| 沙湾县| 临沭县| 涡阳县| 明溪县| 安康市| 中宁县| 延安市|