找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Analysis on Real Analytic Manifolds; Andrew D. Lewis Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
查看: 22965|回復(fù): 39
樓主
發(fā)表于 2025-3-21 16:53:06 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Analysis on Real Analytic Manifolds
編輯Andrew D. Lewis
視頻videohttp://file.papertrans.cn/384/383454/383454.mp4
概述First comprehensive treatment of real analytic functional analysis with emphasis on differential geometry.Includes many separately interesting geometric techniques for geometric analysis on manifolds,
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Geometric Analysis on Real Analytic Manifolds;  Andrew D. Lewis Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive
描述This monograph provides some useful tools for performing global geometric analysis on real analytic manifolds. At the core of the methodology of the book is a variety of descriptions for the topologies for the space of real analytic sections of a real analytic vector bundle and for the space of real analytic mappings between real analytic manifolds. Among the various descriptions for these topologies is a development of geometric seminorms for the space of real analytic sections. To illustrate the techniques in the book, a number of fundamental constructions in differential geometry are shown to induce continuous mappings on spaces of real analytic sections and mappings..Aimed at researchers at the level of Doctoral students and above, the book introduces the reader to the challenges and opportunities of real analytic analysis and geometry..
出版日期Book 2023
關(guān)鍵詞Functional Analysis; Real Analytic Analysis; Geometric Analysis; Analysis on Manifolds; Difefrential Ge
版次1
doihttps://doi.org/10.1007/978-3-031-37913-0
isbn_softcover978-3-031-37912-3
isbn_ebook978-3-031-37913-0Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Geometric Analysis on Real Analytic Manifolds影響因子(影響力)




書目名稱Geometric Analysis on Real Analytic Manifolds影響因子(影響力)學(xué)科排名




書目名稱Geometric Analysis on Real Analytic Manifolds網(wǎng)絡(luò)公開度




書目名稱Geometric Analysis on Real Analytic Manifolds網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Analysis on Real Analytic Manifolds被引頻次




書目名稱Geometric Analysis on Real Analytic Manifolds被引頻次學(xué)科排名




書目名稱Geometric Analysis on Real Analytic Manifolds年度引用




書目名稱Geometric Analysis on Real Analytic Manifolds年度引用學(xué)科排名




書目名稱Geometric Analysis on Real Analytic Manifolds讀者反饋




書目名稱Geometric Analysis on Real Analytic Manifolds讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:51:45 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:56:15 | 只看該作者
Louise H. Marshall PhD,Horace W. Magoun PhDThe tools from the earlier chapters are used to prove continuity and openness results for a variety of geometric constructions, including those involving algebraic operations, differentiation, and composition.
地板
發(fā)表于 2025-3-22 08:30:50 | 只看該作者
Notation and Background,A review is given of the notation and tools used in the book. References are provided to aid a reader who may lack some prerequisites.
5#
發(fā)表于 2025-3-22 12:15:10 | 只看該作者
6#
發(fā)表于 2025-3-22 15:44:43 | 只看該作者
7#
發(fā)表于 2025-3-22 20:42:09 | 只看該作者
8#
發(fā)表于 2025-3-23 00:03:22 | 只看該作者
9#
發(fā)表于 2025-3-23 03:16:42 | 只看該作者
10#
發(fā)表于 2025-3-23 05:55:40 | 只看該作者
Geometric Analysis on Real Analytic Manifolds978-3-031-37913-0Series ISSN 0075-8434 Series E-ISSN 1617-9692
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 10:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台北市| 开封县| 台南县| 昂仁县| 大洼县| 宜宾县| 界首市| 彰武县| 瑞安市| 龙川县| 馆陶县| 盘锦市| 怀仁县| 穆棱市| 巴马| 元朗区| 玛纳斯县| 堆龙德庆县| 郑州市| 瑞安市| 西藏| 卫辉市| 黔东| 临沭县| 土默特右旗| 武威市| 瑞金市| 凌海市| 内江市| 鹤岗市| 通山县| 肥西县| 大兴区| 彩票| 临沭县| 兴山县| 江口县| 酒泉市| 白水县| 合水县| 华阴市|