找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Analysis of the Bergman Kernel and Metric; Steven G. Krantz Textbook 2013 Springer Science+Business Media New York 2013 Bergman

[復(fù)制鏈接]
樓主: Ensign
11#
發(fā)表于 2025-3-23 13:16:56 | 只看該作者
The Bergman Metric,ing theorem (at least in the traditional sense) in several complex variables. More recent results of Burns, Shnider, and Wells [BSW] and of Greene and Krantz [GRK1, GRK2] confirm how truly dismal the situation is. First, we need a definition.
12#
發(fā)表于 2025-3-23 14:36:54 | 只看該作者
13#
發(fā)表于 2025-3-23 19:34:43 | 只看該作者
Further Geometric Explorations,composition of mappings. The standard topology on this group is uniform convergence on compact sets, or the compact-open topology. We denote the automorphism group by .. When . is a bounded domain, the group . is a real (never a complex) Lie group.
14#
發(fā)表于 2025-3-23 22:45:21 | 只看該作者
15#
發(fā)表于 2025-3-24 04:07:19 | 只看該作者
978-1-4939-4429-3Springer Science+Business Media New York 2013
16#
發(fā)表于 2025-3-24 06:45:22 | 只看該作者
Geometric Analysis of the Bergman Kernel and Metric978-1-4614-7924-6Series ISSN 0072-5285 Series E-ISSN 2197-5612
17#
發(fā)表于 2025-3-24 11:53:41 | 只看該作者
18#
發(fā)表于 2025-3-24 16:47:11 | 只看該作者
Discourses of Ageing in Fiction and Feminismtly studied a . complete, infinite-dimensional space from a more abstract point of view. The most common space to be studied in this regard was of course . .. It was when Stefan Bergman took a course from Erhard Schmidt on . . of the unit interval . that he conceived of the idea of the Bergman space
19#
發(fā)表于 2025-3-24 19:52:06 | 只看該作者
20#
發(fā)表于 2025-3-25 02:31:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 18:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石嘴山市| 高碑店市| 瑞金市| 乌鲁木齐县| 永康市| 衡水市| 合作市| 金秀| 沁水县| 东方市| 永仁县| 富锦市| 福清市| 三门峡市| 曲松县| 江孜县| 驻马店市| 嵊州市| 乐清市| 瑞安市| 昭苏县| 喜德县| 攀枝花市| 辽阳市| 太仓市| 香港| 轮台县| 太和县| 屏东市| 临海市| 临邑县| 乐业县| 额敏县| 泽普县| 南皮县| 汝州市| 株洲县| 桂林市| 水城县| 伊宁市| 天柱县|