找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Analysis and Applications to Quantum Field Theory; Peter Bouwknegt,Siye Wu Textbook 2002 Springer Science+Business Media New Yor

[復(fù)制鏈接]
查看: 17161|回復(fù): 37
樓主
發(fā)表于 2025-3-21 17:56:26 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometric Analysis and Applications to Quantum Field Theory
編輯Peter Bouwknegt,Siye Wu
視頻videohttp://file.papertrans.cn/384/383448/383448.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: Geometric Analysis and Applications to Quantum Field Theory;  Peter Bouwknegt,Siye Wu Textbook 2002 Springer Science+Business Media New Yor
描述In the last decade there has been an extraordinary confluence of ideas in mathematics and theoretical physics brought about by pioneering discoveries in geometry and analysis. The various chapters in this volume, treating the interface of geometric analysis and mathematical physics, represent current research interests. No suitable succinct account of the material is available elsewhere.Key topics include: * A self-contained derivation of the partition function of Chern- Simons gauge theory in the semiclassical approximation (D.H. Adams) * Algebraic and geometric aspects of the Knizhnik-Zamolodchikov equations in conformal field theory (P. Bouwknegt) * Application of the representation theory of loop groups to simple models in quantum field theory and to certain integrable systems (A.L. Carey and E. Langmann) * A study of variational methods in Hermitian geometry from the viewpoint of the critical points of action functionals together with physical backgrounds (A. Harris) * A review of monopoles in nonabelian gauge theories (M.K. Murray) * Exciting developments in quantum cohomology (Y. Ruan) * The physics origin of Seiberg-Witten equations in 4-manifold theory (S. Wu)Graduate stud
出版日期Textbook 2002
關(guān)鍵詞Area; Gauge theory; Theoretical physics; Volume; calculus; differential equation; mathematical physics; min
版次1
doihttps://doi.org/10.1007/978-1-4612-0067-3
isbn_softcover978-1-4612-6597-9
isbn_ebook978-1-4612-0067-3Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Science+Business Media New York 2002
The information of publication is updating

書目名稱Geometric Analysis and Applications to Quantum Field Theory影響因子(影響力)




書目名稱Geometric Analysis and Applications to Quantum Field Theory影響因子(影響力)學(xué)科排名




書目名稱Geometric Analysis and Applications to Quantum Field Theory網(wǎng)絡(luò)公開度




書目名稱Geometric Analysis and Applications to Quantum Field Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Analysis and Applications to Quantum Field Theory被引頻次




書目名稱Geometric Analysis and Applications to Quantum Field Theory被引頻次學(xué)科排名




書目名稱Geometric Analysis and Applications to Quantum Field Theory年度引用




書目名稱Geometric Analysis and Applications to Quantum Field Theory年度引用學(xué)科排名




書目名稱Geometric Analysis and Applications to Quantum Field Theory讀者反饋




書目名稱Geometric Analysis and Applications to Quantum Field Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:54:51 | 只看該作者
,The Knizhnik—Zamolodchikov Equations,ol on “Differential Equations in Geometry and Physics.” This article does not constitute a comprehensive account of all that is known about the KZ equations but, rather, is an introduction to some of the main results intended to motivate the reader to further study. The three main sections can be re
板凳
發(fā)表于 2025-3-22 01:20:58 | 只看該作者
Loop Groups and Quantum Fields,stems. The common thread in the discussion is the construction of quantum fields using vertex operators. These examples include the construction and solution of the Luttinger model and other 1+1 dimensional interacting quantum field theories, the construction of anyon field operators on the circle,
地板
發(fā)表于 2025-3-22 07:48:15 | 只看該作者
5#
發(fā)表于 2025-3-22 12:10:10 | 只看該作者
,Gromov—Witten Invariants and Quantum Cohomology,mplectic manifolds as intersection pairings on the moduli space of pseudoholomorphic curves. The invariants are computed in various examples. We also study the quantum product structure on the cohomology groups and its associativity. In Section 2, we introduce relative Gromov—Witten invariants when
6#
發(fā)表于 2025-3-22 15:34:56 | 只看該作者
,The Geometry and Physics of the Seiberg—Witten Equations, the exposition, we will cover several rich aspects of nonperturbative quantum field theory. Attempts have been made to reduce the prerequisites to a minimum and to provide a comprehensive bibliography. Lecture 1 explains classical and quantum pure gauge theory and its supersymmetric versions, with
7#
發(fā)表于 2025-3-22 20:28:47 | 只看該作者
8#
發(fā)表于 2025-3-22 21:36:58 | 只看該作者
Geometric Analysis and Applications to Quantum Field Theory978-1-4612-0067-3Series ISSN 0743-1643 Series E-ISSN 2296-505X
9#
發(fā)表于 2025-3-23 03:04:05 | 只看該作者
https://doi.org/10.1007/978-981-15-1318-3Monopoles are solutions of the Bogomolny equation in ?.. They are introduced and an overview is given of various approaches to studying and understanding them: spectral curves, holomorphic bundles on mini-twistor space, Nahm’s equations and rational maps.
10#
發(fā)表于 2025-3-23 07:26:51 | 只看該作者
Monopoles,Monopoles are solutions of the Bogomolny equation in ?.. They are introduced and an overview is given of various approaches to studying and understanding them: spectral curves, holomorphic bundles on mini-twistor space, Nahm’s equations and rational maps.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 04:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普宁市| 东至县| 安国市| 襄樊市| 开江县| 修武县| 文登市| 永宁县| 安达市| 搜索| 多伦县| 柳林县| 秦皇岛市| 怀安县| 黔西县| 富宁县| 昭平县| 女性| 德格县| 蒙阴县| 台湾省| 天门市| 临海市| 宣武区| 浙江省| 昭苏县| 淮阳县| 汪清县| 青川县| 江都市| 东兴市| 东乌珠穆沁旗| 华阴市| 仙居县| 南丰县| 定安县| 托里县| 汾西县| 鄂伦春自治旗| 德昌县| 博客|