找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Analysis; In Honor of Gang Tia Jingyi Chen,Peng Lu,Zhou Zhang Book 2020 Springer Nature Switzerland AG 2020 Gang Tian.complex geo

[復(fù)制鏈接]
樓主: 決絕
11#
發(fā)表于 2025-3-23 16:20:50 | 只看該作者
12#
發(fā)表于 2025-3-23 21:02:52 | 只看該作者
Big and Nef Classes, Futaki Invariant and Resolutions of Cubic Threefolds,eral inspiration behind this work is no doubt the beautiful paper by Ding and Tian [16] which contains the germs of a huge amount of the successive developments in this fundamental problem, and it is a great pleasure to dedicate this to Professor G. Tian on the occasion of his birthday.
13#
發(fā)表于 2025-3-24 00:56:08 | 只看該作者
Analytical Properties for Degenerate Equations,Still, one may hope that solutions share properties of analytic functions. These properties are closely connected to important open problems. In this survey, we will explain why solutions of an important degenerate elliptic equation have analytic properties even though the solutions are not even C3.
14#
發(fā)表于 2025-3-24 02:41:54 | 只看該作者
15#
發(fā)表于 2025-3-24 07:57:16 | 只看該作者
16#
發(fā)表于 2025-3-24 12:45:17 | 只看該作者
The Aging Workforce and Paid Time Off problem for K?hler constant scalar curvature metrics on polarized algebraic manifolds, especially in the case of resolution of singularities. The general inspiration behind this work is no doubt the beautiful paper by Ding and Tian [16] which contains the germs of a huge amount of the successive de
17#
發(fā)表于 2025-3-24 18:16:17 | 只看該作者
18#
發(fā)表于 2025-3-24 21:50:05 | 只看該作者
19#
發(fā)表于 2025-3-25 02:13:40 | 只看該作者
https://doi.org/10.1057/978-1-137-53477-4uthor. On the resolution the lifted action has fixed isotropy type, in an iterated sense, with connecting fibrations and this structure descends to a resolution of the quotient. For an Abelian group action the equivariant K-theory can then be described in terms of bundles over the base with morphism
20#
發(fā)表于 2025-3-25 04:47:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
康马县| 珠海市| 金山区| 宾阳县| 焦作市| 嘉定区| 九龙城区| 通江县| 宜春市| 井陉县| 灵寿县| 治县。| 乐昌市| 北京市| 巴塘县| 沛县| 金阳县| 临猗县| 广东省| 滦平县| 连平县| 沧州市| 武汉市| 呼图壁县| 彭山县| 故城县| 竹溪县| 疏附县| 龙南县| 拉萨市| 鄯善县| 太谷县| 区。| 衡阳市| 汉川市| 特克斯县| 金坛市| 湘乡市| 湛江市| 杨浦区| 会东县|