找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Analysis; In Honor of Gang Tia Jingyi Chen,Peng Lu,Zhou Zhang Book 2020 Springer Nature Switzerland AG 2020 Gang Tian.complex geo

[復(fù)制鏈接]
樓主: 決絕
11#
發(fā)表于 2025-3-23 16:20:50 | 只看該作者
12#
發(fā)表于 2025-3-23 21:02:52 | 只看該作者
Big and Nef Classes, Futaki Invariant and Resolutions of Cubic Threefolds,eral inspiration behind this work is no doubt the beautiful paper by Ding and Tian [16] which contains the germs of a huge amount of the successive developments in this fundamental problem, and it is a great pleasure to dedicate this to Professor G. Tian on the occasion of his birthday.
13#
發(fā)表于 2025-3-24 00:56:08 | 只看該作者
Analytical Properties for Degenerate Equations,Still, one may hope that solutions share properties of analytic functions. These properties are closely connected to important open problems. In this survey, we will explain why solutions of an important degenerate elliptic equation have analytic properties even though the solutions are not even C3.
14#
發(fā)表于 2025-3-24 02:41:54 | 只看該作者
15#
發(fā)表于 2025-3-24 07:57:16 | 只看該作者
16#
發(fā)表于 2025-3-24 12:45:17 | 只看該作者
The Aging Workforce and Paid Time Off problem for K?hler constant scalar curvature metrics on polarized algebraic manifolds, especially in the case of resolution of singularities. The general inspiration behind this work is no doubt the beautiful paper by Ding and Tian [16] which contains the germs of a huge amount of the successive de
17#
發(fā)表于 2025-3-24 18:16:17 | 只看該作者
18#
發(fā)表于 2025-3-24 21:50:05 | 只看該作者
19#
發(fā)表于 2025-3-25 02:13:40 | 只看該作者
https://doi.org/10.1057/978-1-137-53477-4uthor. On the resolution the lifted action has fixed isotropy type, in an iterated sense, with connecting fibrations and this structure descends to a resolution of the quotient. For an Abelian group action the equivariant K-theory can then be described in terms of bundles over the base with morphism
20#
發(fā)表于 2025-3-25 04:47:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西安市| 阿合奇县| 贵定县| 长顺县| 宜兰市| 寿光市| 刚察县| 彭泽县| 南靖县| 调兵山市| 衡阳市| 桑植县| 黔江区| 麦盖提县| 巴塘县| 湘潭县| 五寨县| 会泽县| 恩平市| 保靖县| 临猗县| 武穴市| 鹤岗市| 娱乐| 阳谷县| 平泉县| 防城港市| 汉源县| 南昌市| 富源县| 漳浦县| 六盘水市| 玉龙| 利辛县| 龙陵县| 韩城市| 英吉沙县| 忻州市| 莫力| 陇西县| 轮台县|