找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Geometric Algorithms and Combinatorial Optimization; Martin Gr?tschel,László Lovász,Alexander Schrijver Book 19881st edition Springer-Verl

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 15:02:10 | 只看該作者
42#
發(fā)表于 2025-3-28 20:29:19 | 只看該作者
https://doi.org/10.1007/978-0-387-93840-0ction together with polyhedral information about these problems can be used to design polynomial time algorithms. In this chapter we give an overview about combinatorial optimization problems that are solvable in polynomial time. We also survey important theorems that provide polyhedral descriptions
43#
發(fā)表于 2025-3-29 02:33:57 | 只看該作者
Disability Culture and Community Performancegraphs. (Alternative names for this problem used in the literature are vertex packing, or coclique, or independent set problem.) Our basic technique will be to look for various classes of inequalities valid for the stable set polytope, and then develop polynomial time algorithms to check if a given
44#
發(fā)表于 2025-3-29 06:14:36 | 只看該作者
Syrus Ware,Joan Ruzsa,Giselle Diasny combinatorial theorems and problems, submodularity is involved, in one form or another, and submodularity often plays an essential role in a proof or an algorithm. Moreover, analogous to the fast methods for convex function minimization, it turns out that submodular functions can also be minimize
45#
發(fā)表于 2025-3-29 10:15:21 | 只看該作者
https://doi.org/10.1007/978-3-642-97881-4Basis Reduction in Lattices; Basisreduktion bei Gittern; Combinatorics; Convexity; Ellipsoid Method; Elli
46#
發(fā)表于 2025-3-29 14:09:17 | 只看該作者
47#
發(fā)表于 2025-3-29 19:25:01 | 只看該作者
,Publications: Autumn 1832–Spring 1839,Convex sets and convex functions are typical objects of study in mathematical programming, convex analysis, and related areas. Here are some key questions one encounters frequently:
48#
發(fā)表于 2025-3-29 20:27:12 | 只看該作者
Mathematical Preliminaries,This chapter summarizes mathematical background material from linear algebra, linear programming, and graph theory used in this book. We expect the reader to be familiar with the concepts treated here. We do not recommend to go thoroughly through all the definitions and results listed in the sequel — they are mainly meant for reference.
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
衡阳县| 略阳县| 武功县| 吕梁市| 炎陵县| 桑植县| 鄂托克前旗| 海盐县| 贺兰县| 小金县| 勃利县| 健康| 平乐县| 永兴县| 昌图县| 宁晋县| 新宁县| 皮山县| 揭东县| 赞皇县| 洪雅县| 离岛区| 罗山县| 布拖县| 五大连池市| 扎鲁特旗| 皮山县| 枞阳县| 顺义区| 临邑县| 攀枝花市| 乌兰浩特市| 类乌齐县| 曲阜市| 北京市| 泰宁县| 渝北区| 南宫市| 太仆寺旗| 瑞安市| 宝清县|