找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Algorithms and Combinatorial Optimization; Martin Gr?tschel,László Lovász,Alexander Schrijver Book 19881st edition Springer-Verl

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 15:02:10 | 只看該作者
42#
發(fā)表于 2025-3-28 20:29:19 | 只看該作者
https://doi.org/10.1007/978-0-387-93840-0ction together with polyhedral information about these problems can be used to design polynomial time algorithms. In this chapter we give an overview about combinatorial optimization problems that are solvable in polynomial time. We also survey important theorems that provide polyhedral descriptions
43#
發(fā)表于 2025-3-29 02:33:57 | 只看該作者
Disability Culture and Community Performancegraphs. (Alternative names for this problem used in the literature are vertex packing, or coclique, or independent set problem.) Our basic technique will be to look for various classes of inequalities valid for the stable set polytope, and then develop polynomial time algorithms to check if a given
44#
發(fā)表于 2025-3-29 06:14:36 | 只看該作者
Syrus Ware,Joan Ruzsa,Giselle Diasny combinatorial theorems and problems, submodularity is involved, in one form or another, and submodularity often plays an essential role in a proof or an algorithm. Moreover, analogous to the fast methods for convex function minimization, it turns out that submodular functions can also be minimize
45#
發(fā)表于 2025-3-29 10:15:21 | 只看該作者
https://doi.org/10.1007/978-3-642-97881-4Basis Reduction in Lattices; Basisreduktion bei Gittern; Combinatorics; Convexity; Ellipsoid Method; Elli
46#
發(fā)表于 2025-3-29 14:09:17 | 只看該作者
47#
發(fā)表于 2025-3-29 19:25:01 | 只看該作者
,Publications: Autumn 1832–Spring 1839,Convex sets and convex functions are typical objects of study in mathematical programming, convex analysis, and related areas. Here are some key questions one encounters frequently:
48#
發(fā)表于 2025-3-29 20:27:12 | 只看該作者
Mathematical Preliminaries,This chapter summarizes mathematical background material from linear algebra, linear programming, and graph theory used in this book. We expect the reader to be familiar with the concepts treated here. We do not recommend to go thoroughly through all the definitions and results listed in the sequel — they are mainly meant for reference.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳曲县| 丰县| 池州市| 崇阳县| 探索| 大埔县| 万载县| 武强县| 隆子县| 大埔区| 德令哈市| 双江| 弥渡县| 奈曼旗| 炉霍县| 兴城市| 崇州市| 海兴县| 舞阳县| 台南市| 姜堰市| 色达县| 都兰县| 昭苏县| 绥芬河市| 达孜县| 齐齐哈尔市| 石门县| 巴塘县| 天柱县| 顺平县| 东丰县| 肇庆市| 洪雅县| 元谋县| 米泉市| 宁陕县| 江津市| 广宁县| 鄢陵县| 山东省|