找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Algorithms and Combinatorial Optimization; Martin Gr?tschel,László Lovász,Alexander Schrijver Book 1993Latest edition Springer-V

[復制鏈接]
樓主: Ensign
11#
發(fā)表于 2025-3-23 09:58:14 | 只看該作者
12#
發(fā)表于 2025-3-23 15:30:38 | 只看該作者
https://doi.org/10.1007/978-3-322-82354-0 of the polytopes associated with these problems. We indicate how these results can be employed to derive polynomial time algorithms based on the ellipsoid method and basis reduction. The results of this chapter are presented in a condensed form, to cover as much material as possible.
13#
發(fā)表于 2025-3-23 21:04:39 | 只看該作者
Complexity, Oracles, and Numerical Computation,rk in which algorithms are designed and analysed in this book. We intend to stay on a more or less informal level; nevertheless, all notions introduced here can be made completely precise — see for instance ., . and . (1974), . and . (1979).
14#
發(fā)表于 2025-3-24 01:44:46 | 只看該作者
15#
發(fā)表于 2025-3-24 03:25:25 | 只看該作者
Combinatorial Optimization: Some Basic Examples,tion problems are formulated as linear programs. Chapter 8 contains a comprehensive survey of combinatorial problems to which these methods apply. Finally, in the last two chapters we discuss some more advanced examples in greater detail.
16#
發(fā)表于 2025-3-24 08:07:32 | 只看該作者
17#
發(fā)表于 2025-3-24 13:08:01 | 只看該作者
Geometric Algorithms and Combinatorial Optimization
18#
發(fā)表于 2025-3-24 17:21:29 | 只看該作者
Martin Gr?tschel,László Lovász,Alexander Schrijver
19#
發(fā)表于 2025-3-24 19:07:36 | 只看該作者
Stable Sets in Graphs, classes of graphs which are in fact characterized by such a condition, most notably the class of perfect graphs. Using this approach, we shall develop a polynomial time algorithm for the stable set problem for perfect graphs. So far no purely combinatorial algorithm has been found to solve this pro
20#
發(fā)表于 2025-3-24 23:27:34 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 14:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
怀安县| 天门市| 都匀市| 洛阳市| 方城县| 洱源县| 项城市| 定远县| 襄樊市| 高密市| 尼勒克县| 嫩江县| 普安县| 东明县| 汾西县| 宣武区| 衡东县| 昌黎县| 长沙县| 建平县| 蒙山县| 巍山| 漳平市| 银川市| 晋中市| 阳信县| 阿克陶县| 山东省| 普兰县| 淮南市| 罗田县| 田阳县| 崇信县| 中卫市| 金昌市| 大同县| 齐齐哈尔市| 长兴县| 天水市| 云林县| 孝义市|