找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Algorithms and Combinatorial Optimization; Martin Gr?tschel,László Lovász,Alexander Schrijver Book 1993Latest edition Springer-V

[復(fù)制鏈接]
樓主: Ensign
11#
發(fā)表于 2025-3-23 09:58:14 | 只看該作者
12#
發(fā)表于 2025-3-23 15:30:38 | 只看該作者
https://doi.org/10.1007/978-3-322-82354-0 of the polytopes associated with these problems. We indicate how these results can be employed to derive polynomial time algorithms based on the ellipsoid method and basis reduction. The results of this chapter are presented in a condensed form, to cover as much material as possible.
13#
發(fā)表于 2025-3-23 21:04:39 | 只看該作者
Complexity, Oracles, and Numerical Computation,rk in which algorithms are designed and analysed in this book. We intend to stay on a more or less informal level; nevertheless, all notions introduced here can be made completely precise — see for instance ., . and . (1974), . and . (1979).
14#
發(fā)表于 2025-3-24 01:44:46 | 只看該作者
15#
發(fā)表于 2025-3-24 03:25:25 | 只看該作者
Combinatorial Optimization: Some Basic Examples,tion problems are formulated as linear programs. Chapter 8 contains a comprehensive survey of combinatorial problems to which these methods apply. Finally, in the last two chapters we discuss some more advanced examples in greater detail.
16#
發(fā)表于 2025-3-24 08:07:32 | 只看該作者
17#
發(fā)表于 2025-3-24 13:08:01 | 只看該作者
Geometric Algorithms and Combinatorial Optimization
18#
發(fā)表于 2025-3-24 17:21:29 | 只看該作者
Martin Gr?tschel,László Lovász,Alexander Schrijver
19#
發(fā)表于 2025-3-24 19:07:36 | 只看該作者
Stable Sets in Graphs, classes of graphs which are in fact characterized by such a condition, most notably the class of perfect graphs. Using this approach, we shall develop a polynomial time algorithm for the stable set problem for perfect graphs. So far no purely combinatorial algorithm has been found to solve this pro
20#
發(fā)表于 2025-3-24 23:27:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 18:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南丰县| 阳新县| 吕梁市| 射洪县| 通州市| 云和县| 玉环县| 承德县| 莒南县| 包头市| 同德县| 北票市| 关岭| 津南区| 台中县| 黔南| 开封市| 乡城县| 光山县| 库尔勒市| 南宁市| 兰州市| 修水县| 大新县| 彭水| 宁阳县| 滦南县| 桐城市| 天津市| 新河县| 彭州市| 赤城县| 文昌市| 寿光市| 延庆县| 张掖市| 巫溪县| 太保市| 康定县| 克什克腾旗| 礼泉县|