找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geography of Order and Chaos in Mechanics; Investigations of Qu Bruno Cordani Book 20131st edition Springer Science+Business Media, New Yor

[復制鏈接]
樓主: Polk
21#
發(fā)表于 2025-3-25 06:13:35 | 只看該作者
https://doi.org/10.1007/978-3-322-85333-2ted three–body problem, and the motion of a satellite around an oblate primary. In all three cases we will first find the normal integrable form, comparing the relative motion with the “true” one obtained by numerical integration. Several concrete examples will be given, showing in general a very go
22#
發(fā)表于 2025-3-25 07:45:03 | 只看該作者
Sinn und Zweck der Kino-Projektoren,ve and quantitative features of the relative dynamics, even for systems with three or more degrees of freedom. By combining analytical, numerical, and geometrical methods, in effect one can also grasp the geography of the resonances, and hence the distribution of order and chaos.
23#
發(fā)表于 2025-3-25 12:08:30 | 只看該作者
Bruno CordaniOffers a unique approach to the dynamics of quasi-integrable Hamiltonian systems.Provides a rare opportunity for readers to experiment with and fully conceptualize recent numerical tools via customize
24#
發(fā)表于 2025-3-25 16:28:42 | 只看該作者
https://doi.org/10.1007/978-0-8176-8370-2KAM theory; MATLAB programs; Nekhoroshev theorem; normal forms; numerical integration; perturbation theor
25#
發(fā)表于 2025-3-25 22:47:50 | 只看該作者
26#
發(fā)表于 2025-3-26 01:31:51 | 只看該作者
27#
發(fā)表于 2025-3-26 05:00:18 | 只看該作者
28#
發(fā)表于 2025-3-26 11:26:56 | 只看該作者
Die Wissenschaft vom Leben nach dem TodIn this chapter, we will study the group-geometrical structure of the Kepler problem and point out how this structure also turns out to be useful in the study of the perturbed case.
29#
發(fā)表于 2025-3-26 14:04:54 | 只看該作者
30#
發(fā)表于 2025-3-26 17:54:53 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 00:46
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
都昌县| 边坝县| 思南县| 同江市| 博客| 扎鲁特旗| 阜城县| 绥江县| 韶关市| 铅山县| 绥芬河市| 房山区| 东莞市| 凤城市| 黔西县| 伊金霍洛旗| 方山县| 翁牛特旗| 德钦县| 漯河市| 都匀市| 奉贤区| 水城县| 顺平县| 望江县| 习水县| 革吉县| 尚义县| 淮安市| 榆林市| 南开区| 金寨县| 昌都县| 行唐县| 正定县| 赞皇县| 洛南县| 嘉黎县| 得荣县| 噶尔县| 屯昌县|