找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geodesic Convexity in Graphs; Ignacio M. Pelayo Book 2013 Ignacio M. Pelayo 2013 Convex hull.Geodesic convexity.Geodetic closure.Graph con

[復(fù)制鏈接]
查看: 23697|回復(fù): 39
樓主
發(fā)表于 2025-3-21 16:53:45 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geodesic Convexity in Graphs
編輯Ignacio M. Pelayo
視頻videohttp://file.papertrans.cn/384/383097/383097.mp4
概述Geodesic Convexity in Graphs ?is a self-contained monograph which is devoted to geodesic convexity on finite, simply connected graphs.Includes specific definitions, discussion and examples, results, p
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: Geodesic Convexity in Graphs;  Ignacio M. Pelayo Book 2013 Ignacio M. Pelayo 2013 Convex hull.Geodesic convexity.Geodetic closure.Graph con
描述????????Geodesic Convexity in Graphs?is devoted to the study of the geodesic convexity on finite, simple, connected graphs. The first chapter includes the main definitions and results on graph theory, metric graph theory and graph path convexities. The following chapters focus exclusively on the geodesic convexity, including motivation and background, specific definitions, discussion and examples, results, proofs, exercises and open problems. The main and most st?udied parameters involving geodesic convexity in graphs are both the geodetic and the hull number which are defined as the cardinality of minimum geodetic and hull set, respectively. This text reviews various results, obtained during the last one and a half decade, relating these two ?invariants and some others such as convexity number, Steiner number, geodetic iteration number, Helly number, and Caratheodory number to a wide range a contexts, including products, boundary-type vertex sets, and perfect graph families. This monograph can serve as a supplement to a half-semester graduate?course in geodesic convexity?but is primarily?a guide for postgraduates and researchers interested in topics related to metric graph theory
出版日期Book 2013
關(guān)鍵詞Convex hull; Geodesic convexity; Geodetic closure; Graph convexity; Hull set; Metric graph theory; partial
版次1
doihttps://doi.org/10.1007/978-1-4614-8699-2
isbn_softcover978-1-4614-8698-5
isbn_ebook978-1-4614-8699-2Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightIgnacio M. Pelayo 2013
The information of publication is updating

書目名稱Geodesic Convexity in Graphs影響因子(影響力)




書目名稱Geodesic Convexity in Graphs影響因子(影響力)學(xué)科排名




書目名稱Geodesic Convexity in Graphs網(wǎng)絡(luò)公開度




書目名稱Geodesic Convexity in Graphs網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geodesic Convexity in Graphs被引頻次




書目名稱Geodesic Convexity in Graphs被引頻次學(xué)科排名




書目名稱Geodesic Convexity in Graphs年度引用




書目名稱Geodesic Convexity in Graphs年度引用學(xué)科排名




書目名稱Geodesic Convexity in Graphs讀者反饋




書目名稱Geodesic Convexity in Graphs讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:58:51 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:50:56 | 只看該作者
地板
發(fā)表于 2025-3-22 06:54:30 | 只看該作者
5#
發(fā)表于 2025-3-22 12:34:43 | 只看該作者
6#
發(fā)表于 2025-3-22 13:10:33 | 只看該作者
7#
發(fā)表于 2025-3-22 17:18:50 | 只看該作者
8#
發(fā)表于 2025-3-23 00:58:55 | 只看該作者
9#
發(fā)表于 2025-3-23 02:07:57 | 只看該作者
10#
發(fā)表于 2025-3-23 08:01:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 00:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
英吉沙县| 浙江省| 白山市| 灌南县| 乐平市| 塔城市| 赤壁市| 滁州市| 巴南区| 辽宁省| 西峡县| 荥经县| 峨眉山市| 芦山县| 嘉黎县| 庄浪县| 泾川县| 名山县| 桂平市| 蓝山县| 濮阳县| 梁山县| 庄河市| 稻城县| 聊城市| 精河县| 长武县| 资兴市| 孙吴县| 刚察县| 湘阴县| 涞源县| 永胜县| 浦城县| 城市| 淮北市| 云浮市| 隆化县| 榕江县| 峨山| 四平市|